

Concept Plan for the Renovation of Long Branch-Wayne Local Park

APPENDIX

Montgomery County Planning Board Meeting July 20, 2017

TABLE OF CONTENTS

RECOMMENDED CONCEPT PLAN

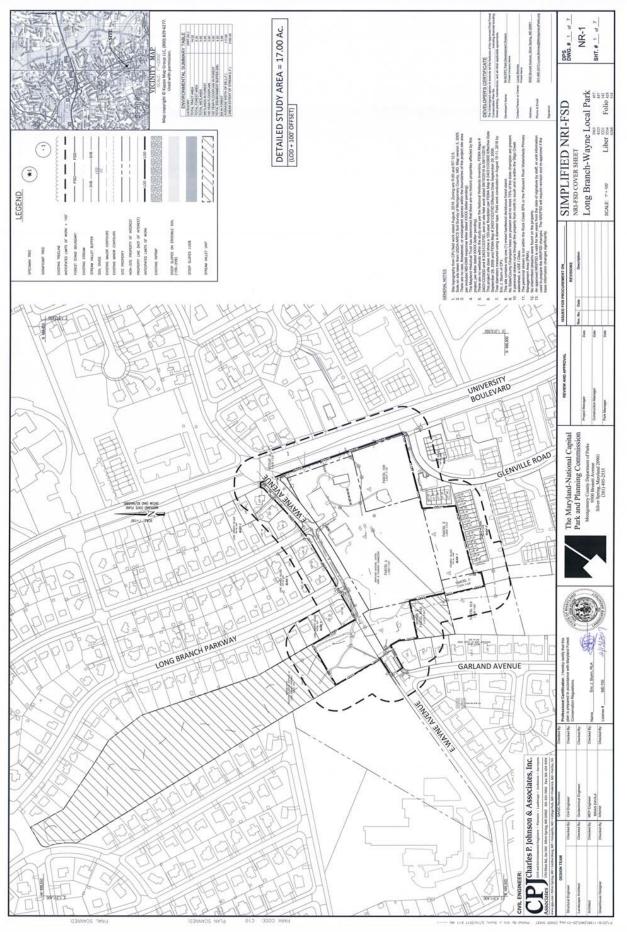
- 1. Recommended Concept Plan
- 2. NRI/FSD Plan Application
- 3. Stormwater Management Concept Plan Application
- 4. Detailed Cost Estimate / Phasing Plan

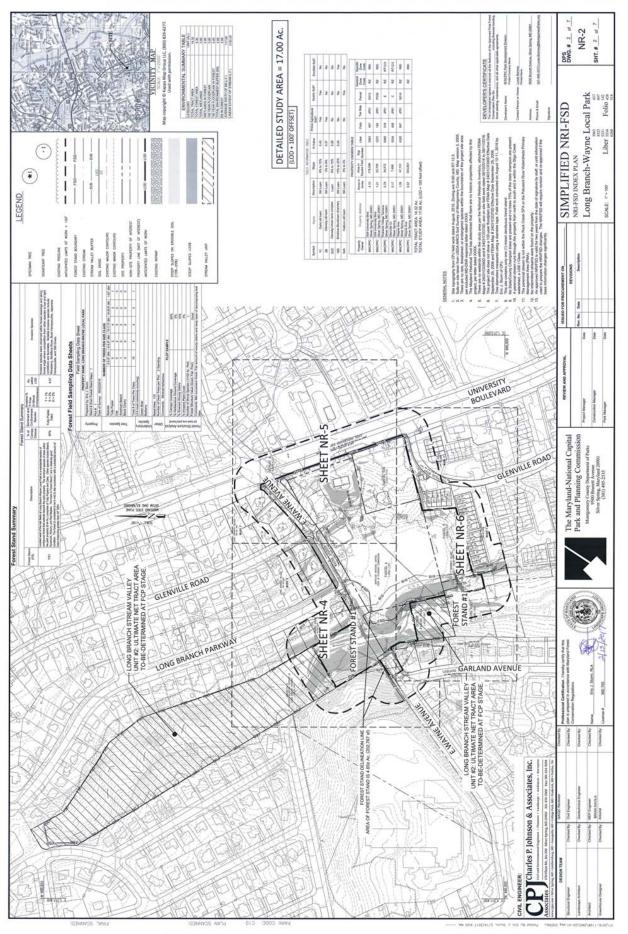
MASTER PLAN REFERENCES

1. PROS 2017

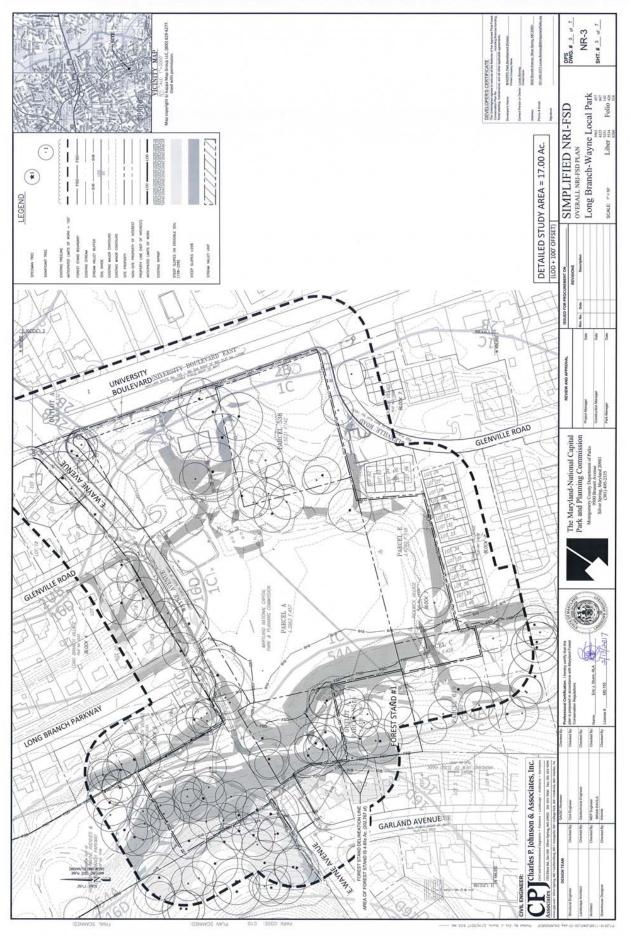
AGENCY COORDINATION

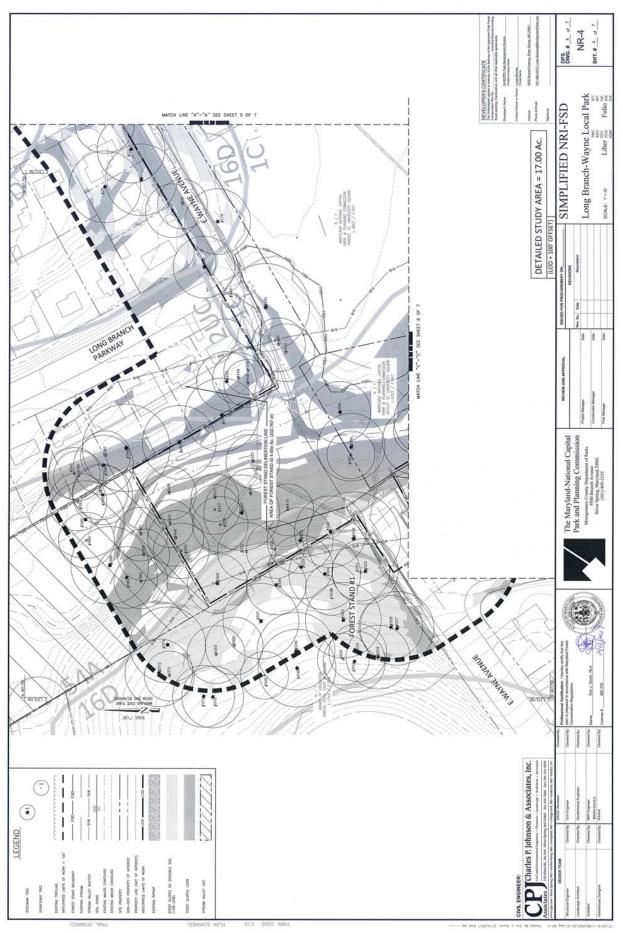
1. The Maryland State Highway Administration (SHA), District 3 Office

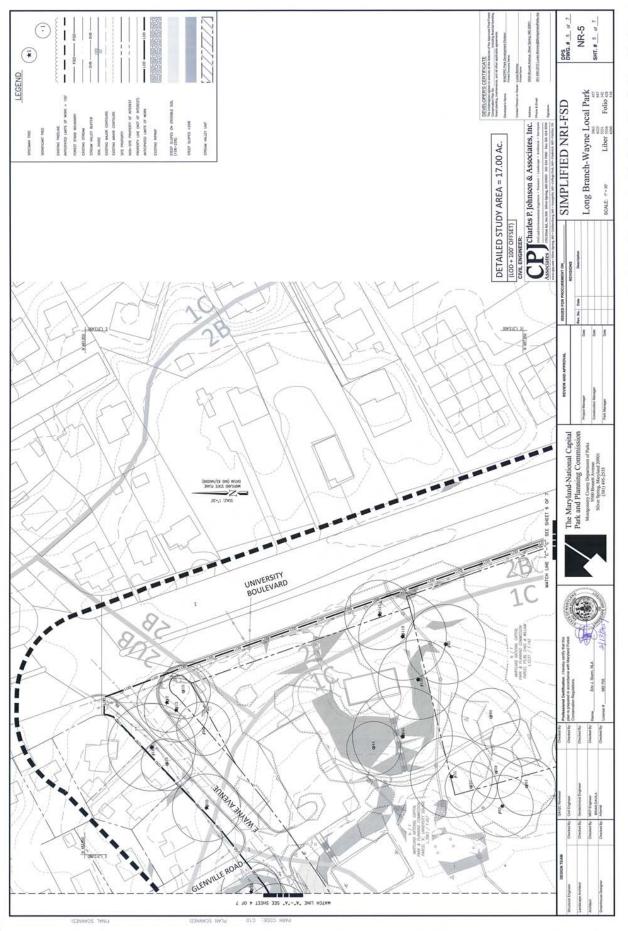

RECOMMENDED CONCEPT PLAN

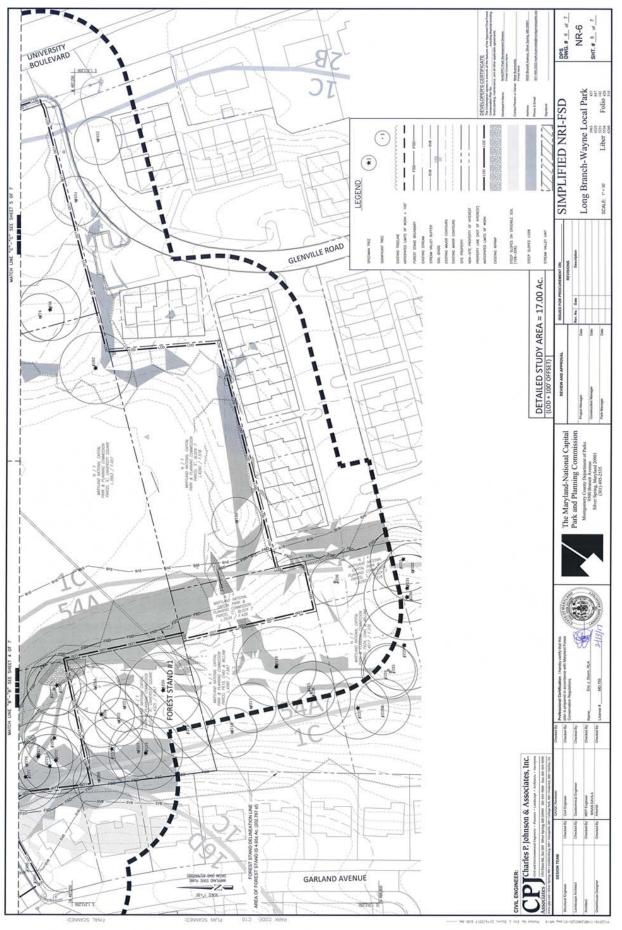


Long Branch-Wayne Local Park Concept Plan - Appendix


Natural Resource Inventory and Forrest Stand Delineation (NRI-FSD)


Long Branch-Wayne Local Park Concept Plan - Appendix


Long Branch-Wayne Local Park Concept Plan - Appendix


Long Branch-Wayne Local Park Concept Plan - Appendix

Long Branch-Wayne Local Park Concept Plan - Appendix

Long Branch-Wayne Local Park Concept Plan - Appendix

Long Branch-Wayne Local Park Concept Plan - Appendix

Forest Stand Delineation Narrative	The site is located on the west lie of University Avenue approximately 0.78 miles south of the 1496. Washington D.C. Behwar's inner Looo. The overal site is conscioud of several parcels	totaling 6.444. Acres and is troom as Long Branch-Wayes Local Park as owned and managed by the Maryand National-Capital Park and Planning Commission/ Mongomery County, Maryand.	The project disturbance area (anticipated timbs of work plus 100° othert) has not been set via an actual design plan and therefore this plan utilizes the property line of the pack as a preliminary.	L.U.U. and to establish the 100 other buries to set the parameters of the two i PSU study area. which encompasses 17.29 acres +/, all inclusion.	The Longg Branch-Wayne Local Park is comprised of both active and passwe park uses and physical improvements. The existing improvements include a parking lot, picnic sheller, open	green areas, a mult-use athetic turf feet (soccer and lacross), and misoetianeous waking parts. The open and green areas are populated with mature trees (groupings and specimens). The	Long Brunch Creek comport aget boasts a level mature toreated area, comprised of moley native deciduous hardwoots and understory as described herein.	The current zoning is R-60 and RT-12.5. The sumpling method used was by observation and	clentification of species and curopy coverage in depth enough to create this harrane in accordance with the Simplified Forest Stand requirements of the Mixedgomery County and Chapter	22A, Forest Conservation Law Manuel.	The defineation identified one (1) forest stand on the sile. Forest Stand 1 runs congruently on both sides of the Lond Branch Corridor north to south threach the sile. Forest Stand one (1) is a makine	forest with some new successional growth due to necerify disturbed areas on the eastern side of the Create Developent Fundanced Research Association in Stande 1 in Tution Bookie-Oranova an Auto-	rutra) Carya spo - American Sycamore-American Beech Canopy Layer with understory and strub	Stand One (1) comprises approximately 4.51 +i- acres. An herbaceous layer structure that	incourse an organic layer or execriptered rear rear, excits a proving out in year or proving the present, has embed minimum between the attribution field and the stream in the east of the stream. This failers to various interview sections and have another due streams to be east of the stream.		The are contains between environmental instruction and resources. They include the material of the U.S.* - Long Branch Creek, which runs north to source, through the site. In the last several years,	are una restance on the compared on the personnel waters are partern and on any or any partern barres and any improvements remain visible. Long Branch Creek is part of the Partiel Branch willershed. There are no fearburster united in the other participation and any and any the participation.	are do frephimade wellakes toreares, economicas, enserganta on ano anni. Intere ea a dampuent-suturated area along the existing pathwell point normal and data of the potestrain bridge.	Nowever no hydric poils or hydrochydroc wegetation were bund as per soll auger penetration and soll amplekobervation amhydis. An aphilliount (2x* DBH - 3X* DBH) and sports penetrations (3X* DBH + 5) tress have have however in the provider taken ones. Here, have answerd and not instruct in the X*X* Taken.	ores wave does upget in the project study area, then averaged and are taken to area take on this MRI / FSO Plan. No champion trees were observed during the investigation and none are	recorded an exciting on sele in the state record as well.																					DOURI DOCING CENTRALATE	De Universitat de la construction de la constructio	Investigation of the second se	Contract Persons or Contract Managements	Advance NGC Brench Ammuna, Brench Ammuna	DETAILED STUDY AREA = 17.00 Ac. REALED STUDY AREA = 17.00 Ac.	FFSET)	SIMPLIFIED NRI-FSD		ocal Park		
																																																DETAILED	(LOD + 100' OFFSET)	REVEW AND APPROVAL. ISSUED FOR PROCUREMENT ON		Date	Absorpte Dave	1
	8		rs atha	en en	Overtist atte Vhite Cak Overtist after Vhite Cak	us alba White Oak to alba White Oak	Tulp P	n taipdera T	A aba W	us alba White Oak vo alba White Oak	w	Deercon atha White Oak	Overtus sibe Vihile Oak	White	dentro tápites Tulp Popler	odendron tulpdens Tulip Propier		in tubbing		W	M	Overtates relation tableters Tudio Postere	2	In highlers Turip Poplar		agus grandificra American Beech.		arum Mipilera	Bendtren tulligillera Tullig Proglar Association a General Tullig Proglar	2	Deecon rubos Red Oak Deeron abs University University	- Annual - A	anditioa American Beech In Mipfers Tulip Propar		odenthein häpflets Tulp Propiar odenthein hapflets Tulp Propiar	section taliphera Tudo Poplar	Constrain able White Oak	Platanua occidentalia American Sycamore Licoberdon tatolena Tulo Poste		uthrum Read Magee In Migdees Turly Propar	Morun righta Blauck Multivery	for Same undirect								The Mareland-National Canital		1 1	Silver Solor dramatic Avenue Silver Solor Sylver 20001 (101) 492-2335	
10 manue and 540. SPEC Anternation	No. THUMA SLIT	124 SMGL 27 Y N Cool Own	256 52WQE 227 Y Y 0000	328 SW0LL 31 Y Y 0000 328 SW0LL 32 Y Y Q000	329 SMGIL 20' Y N Good 330 \$MGLI 20' Y N Good	SINGLE 31' Y Y Quod SINGLE 38' Y Y Cood	plar 113 SWGLE 24" Y N Good Lindedde	SWGLE 2017 Y Y COOOD LIN SWGLE 227 Y Y COOOD	IM SWALE XY Y Y Cood	Mage 317 SW0LL 30° Y Y Good Owners and Owners and Mage 338 SW0LL S0° Y Y Good Owners and	Sandut 30° V V Good	ster 140 SNULL 24' Y N Good Overna alter due 151 counts out v 11 count Instantion	253 SWGLE 27 Y N Good	V 357 SWOLL 357 V V Good	a 366 SWULL 20" Y Y Cood Lifeo	NA SWULL ZY Y N Good Lindedr	370 SW04 GF T N 0000 L0	171 SNOLE 31' Y Y Cood Life 173 SNOLE 20' V N Good	171 SWGII NY Y Y Coad Sou	314 SanGut 3ar V V Coool 364 SanGut 27 V N Coool	Vie 385 SINGLE 31' V Y Quod	Proper 345 Swoll 287 Y N Good Ownta Proter 117 Swoll 277 V N Good Licolendor	141 SNGLE 3P V V Cood Pu	plar 289 SNGLE 28° Y N Cood Livedendry Non concir py V V Cood Livedendry	SWOLL 2Y Y N Cood Linu	ppu 192 SINGLE 24' Y N Good Fagin gr 191 SINGLE 24' V N Good Fagin gr	000 354 SINGLE 2P Y N Good Lindendry	yole 355 SMGL 24 Y Y Cood Advertant gale 356 SMGL 24 Y Y Good Linoseden	397 SPGLE 25" Y N Good Life yes turn Arr V V Coost Life	401 \$2M04 44 7 7 0000 UN0	plar 405 SINGLE 28F Y N Good Overse and And SINGLE 28F Y N Good Overse	SNGL 24' Y N Good	QDI TWIN ZT Y N Good Fagure presente 411 SMG44 24' Y N Good Fagure presente	5/MOLE 25' Y N 0005 LM	SINGLE 26° Y N Good Lo SINGLE 26° Y N Good Lo	SINGLE 27 Y N Good Line	Shold 27 Y N Good	play 443 SNOIE 29' Y N Deat Putana o 443 SNOIE 29' Y Y Cood Unotedno	SMOLE 28" Y N Good	450 SNGL	451 5/8046 25° Y N 0/806 453 5/8046 26° Y N 0/806	100000 H	rutinore deter	and a second s	5 2					In the second configuration . I here the configuration of the configurat	areaton lagations		024(3)/ber 7 Service	
Printman antima interesting printman	DU FANLAL MANE	Quentus abs Dianos	Quercue núres		Overcue sites Overcue sites	white tuby	Good Linodebdren Lilipitera Tulipit	Cood Lerodendren highera Tulp P Cood Lerodendren highera Tulp P	Good Cettis occidentatia Haukt	Rad	Cood Oversia sp. Oversia 59	Cood Lunodendran Lilpiñes Tuño P Cood Linodendran Liloù	Linotende	Good Prunus sentina Black Chem		Good Aontrutter Red Mode Cood Ann automatican States Unde		Good Acer seccharinum Silver Maple Good Lirocenden tubplera Tulp Projer	Planarus occidentails	Good Owenum rubma Normalment Red Owa Good Rindra previduaziona Black Loovat	Pinar shotua Ear	Lincolending Tulp Lincolending Tulp	a Tuly	Good Linodention tulpitera Tulp P	Good Linedension waynes Tutip P Good Linedendon Mighes Tutip P	Good Linkolondrun tulpitera Tulp P	Cood Leodendara Miglilera Tutip T	Good Lirodendhin tulipflera Tulip 7 Good Lirodenden fulgiflera Tulip 7	Overcus retra	Poor Frazins pernoyhancia Green Adi Coot Livodenden talpätes Tulo Pools	Good Lindendron hilpitera Turip P	Coort Linodendron hilpitlera Tulip 7 Good Linodendron sulpitlera Tulip 7	Cood Licodendren highlera Tuig P	Good Lindometrion talgetera Tudo P	Cooof Likoolendran Migdlesa Tudi P Cooof Likoolendran Migdlesa Tudi P	Cood Linderden Lingthea Tug T	Good Lhodendron talgeters Tale R Good Lincolendin talgeters Tale R	Good Lindendrion tulpitera Tulp P	Cood Lincolendrum Landomean Turig P	Cood Likodendrus tilipētera Tulip Popia Cood Likodendrus tilipētera Tulis Poria	Lincolendron tuipolens Ti	Good Lincolendron Lapolena Tulip Poplar Good Lincolendron Lapolena Tulip Poplar	Poor Patanus cocidentals American System Coort Lincohordino talindera Tutis Brock	Queros atta			The Associates, Inc.	m - Planmas - Landiage - Andriana - Sarrejove ang MD Dono. 301-020 Tax, 306 -03-094		October Constant Constant By Profession Constant By Profession	Gestechnical Express	MCP Expeed	and fly Adventation Constant fly Loo	
TURNEY CORE SIG. SPEC.	SINGLE 30' Y Y Y	9 Savest 27 Y N V	Swould 20' V N	18 20000 28° Y N	SINGLE 347 Y Y Y Y	22 SINGLE 34' Y Y 21 SINGLE 34' Y Y	44		A 277 Y N	25 SINGLE AT Y Y Y	SNULL ZIC Y N	SWOLL 25' Y N N	TWIN 31' V V	SINGLE 24" Y N V V	- 2	92 THINK AC' V V O	SMGUE 44° Y V	126 SINGUE AUT Y Y Q	SMOLE AFF Y Y	D A A AC THEN CLI	N A 32 HOUS	Smott ar Y Y N	Smout 25' V N	Smout 31' Y Y	SHGLE 24 Y N	SMG4 24 Y N	SMOLE 37 Y Y Y	225 SINGUE 24" Y N 0 226 SINGUE 31" Y Y 0	SHOLE 31' Y Y	228 58646 28° Y Y Y P	SMOLE AT Y Y	231 SNUSE 34" Y Y 0	233 50464 337 Y Y Q	235 SMGLE 27 Y N O	236 SanGue 24° Y N O	254 TWIN 33' Y Y G	255 58638 31' Y Y Y 2	257 SHOUE 27" Y N G	268 58404 30° Y Y V C	270 SHIGUE 35" Y Y Q	SNOL 32 Y Y	27h SMG4E 24° Y N 0	A A A A A A A A A A A A A A A A A A A	SANCLE 31' Y Y	TWON 41" Y Y SANGUE 34" Y Y	CIVIL ENGINEER-	CDTCharles P. John	Associates Intranticional Ingree	121	DESIGN TEAM	Landscape Antilect Deale	Actinua Owavel by	Generate Designer Oriole	CAN IN THE REPORT OF

Long Branch-Wayne Local Park Concept Plan - Appendix

February 8, 2017

M-NCPPC – Countywide Planning Division Montgomery County Planning Department 8787 Georgia Avenue Silver Spring, MD 20910-3760

RE: LONG BRANCH-WAYNE LOCAL PARK Montgomery County, MD Simplified NRI FSD Narrative

Dear INTAKE Staff:

We hereby submit this letter and project narrative/summary along with the attached accompanying documents to complete this request for an approval of the attached SIMPLIFIED NRI FSD Plan.

Long Branch - Wayne Local Park Simplified NRI FSD - Project Narrative & Summary Statement

The Long Branch-Wayne Local Park NRI FSD is being prepared to provide detailed existing conditions and natural resources and environmental features necessary for the Parks Department of Montgomery County, Maryland AKA M-NCPPC to advance design studies for much needed future park improvements.

The Long Branch-Wayne Local Park is located on the west side of University Boulevard, approximately three quarters of a mile south of the 495 Beltway. The park is also bounded partially on the north side by East Wayne Avenue (which is split by the Long Branch Creek Corridor and partially on the south side by Glenville Road. The Long Branch Creek Corridor (M-NCPPC Parkland) adjoins the park boundary's north and south The west side of the park is bounded by Garland Avenue and the end of East Wayne Avenue to the north and south just east of the Oak View Elementary School.

Overall, the park project net tract area is comprised of five (5) parcels totaling 14.32 acres, with 4.50 of those acres being forested. The Long Branch Creek runs north to south longitudinally through the west central portion of the site. A varying width stream buffer coincides with both sides east and west of the Long Branch Creek. Steep slopes of both 15-25% and greater than 25% exist on the site as well. The Long Branch Stream has had previous stream restoration work completed within this park site.

Currently the park's existing improvements include a parking lot, asphalt walkways/paths, concrete steps, a picnic pavilion structure, play structure, open grass areas, basketball court, hiking paths/pedestrian bridge and a multi-purpose natural turf sports field.

The Simplified NRI FSD is inclusive of both the park tract boundary "park parcel" and adjoining parcels known and named as Long Branch SVU (Stream Valley Unit) # 2 that are part of the anticipated park's site improvements and development area. The NRI FSD "Study Area" covers 17.00 (17.0004) acres which includes the park boundary limits plus a 100 foot offset of the park boundary as the anticipated Limit of Disturbance Line (LOD).

The NRI FSD is all inclusive of specimen and significant trees, forest stands (one) and environmental features. The site consists of one mature forest stand as described on the plans and there are no freshwater wetlands on site. The Long Branch Stream is categorized as a "Waters of the U.S".

¹⁷⁵¹ Elton Road, Suite 300 • Silver Spring, MD 20903 • 301-434-7000 • Fax: 301-434-9394 • www.cpja.com

As may be required, an FCP Plan will be generated during the proposed design of the park improvements.

Please find attached the following documentation in support of this request and application submission:

- NRI Application Form M-NCPPC Montgomery County
- NRI FSD Plan (Sheets 1-6)
- RTE Species MDNR Letter (requesting clearance)

Should you have any questions on this application submission or should you need any additional information, please do not hesitate to call me at 301.434.7000 x 175.

Registered Landscape Architect MD #755 Charles P. Johnson & Associates, Inc.

cc:

M-NCPPC Parks Development Division - Att: Lucas Bonney CPJ File No. 2016-1198

Larry Hogan, Governor Boyd Rutherford, Lt. Governor Mark Belton, Secretary Joanne Throwe, Deputy Secretary

February 14, 2017

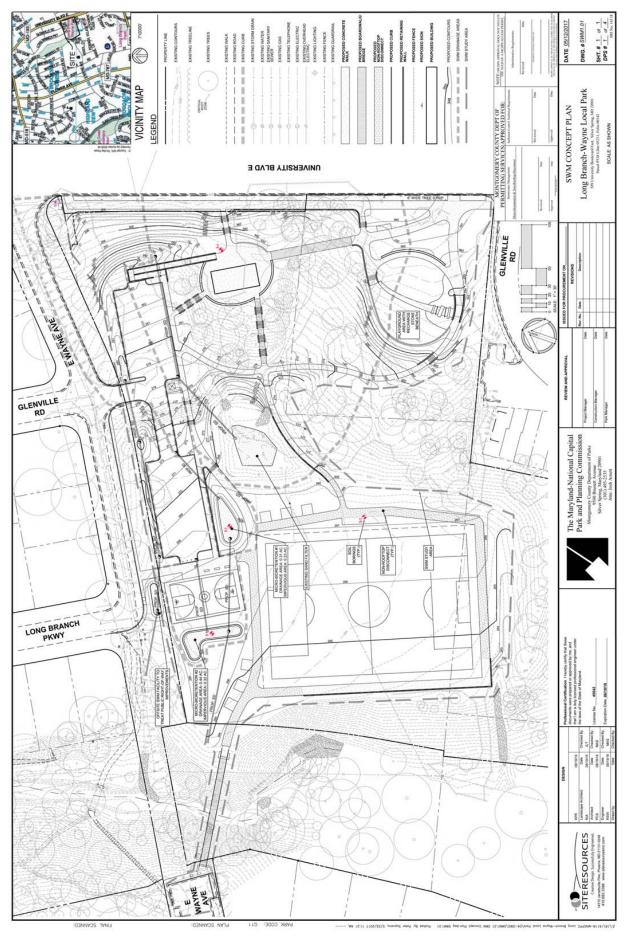
Mr. Eric J. Sturm Charles P. Johnson & Associates, Inc. 1751 Elton Road Suite 300 Silver Spring, MD 20903

RE: Environmental Review for Long Branch Wayne Local Park, Silver Spring, improvements, Montgomery County, Maryland.

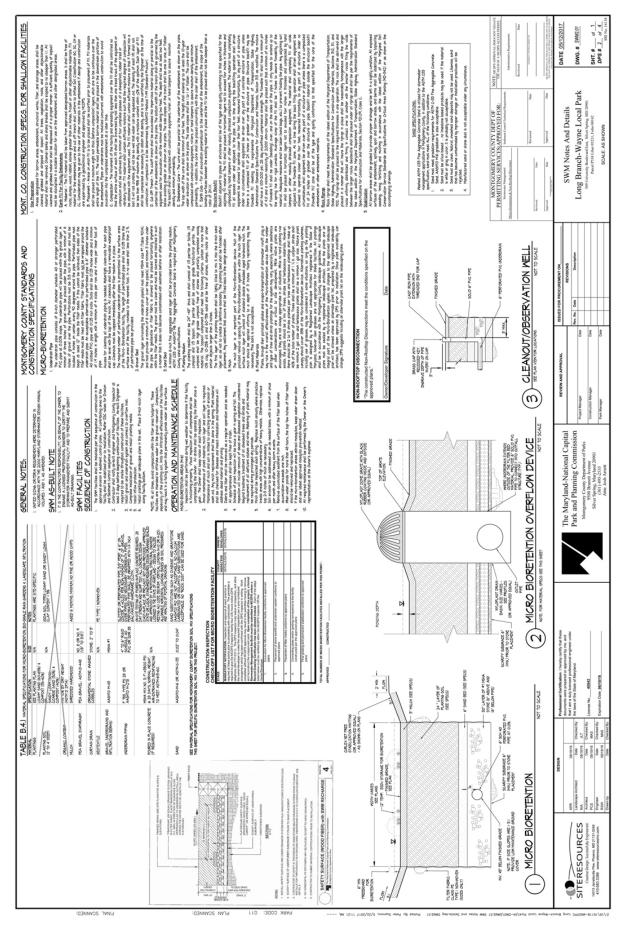
Dear Mr. Sturm:

The Wildlife and Heritage Service has determined that there are no official State or Federal records for listed plant or animal species within the delineated area shown on the map provided. As a result, we have no specific concerns regarding potential impacts or recommendations for protection measures at this time. Please let us know however if the limits of proposed disturbance or overall site boundaries change and we will provide you with an updated evaluation.

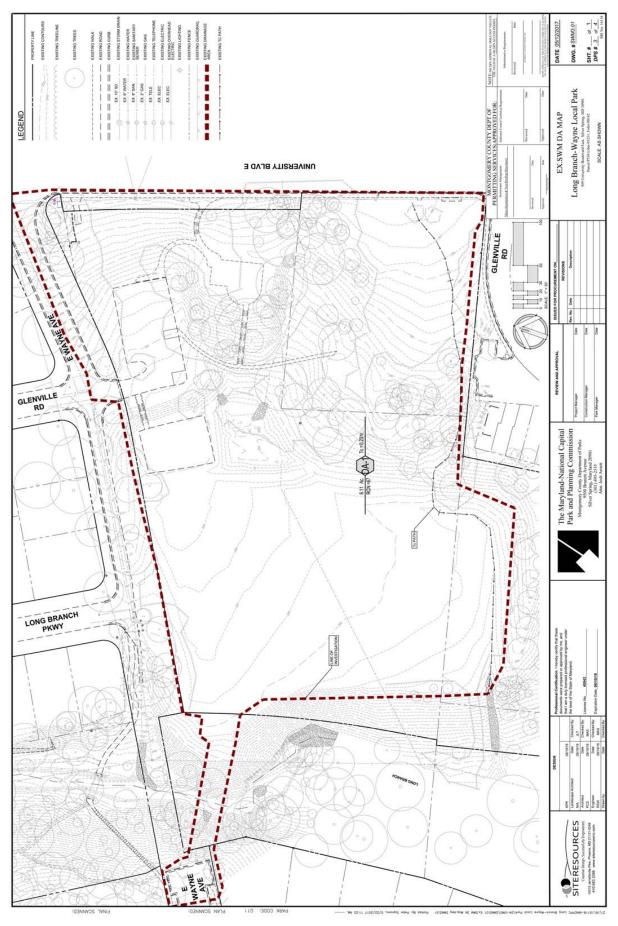
Thank you for allowing us the opportunity to review this project. If you should have any further questions regarding this information, please contact me at (410) 260-8573.

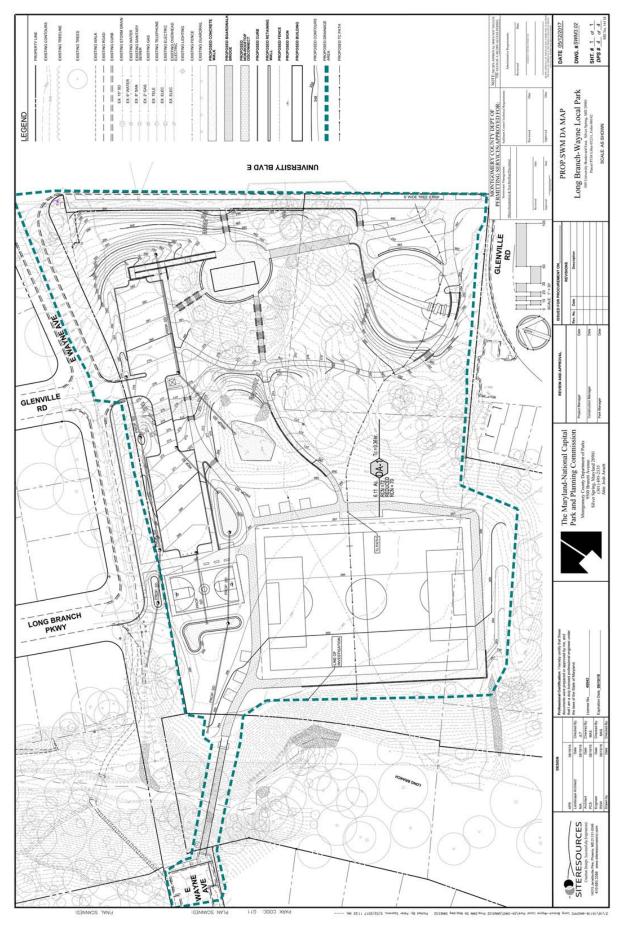

Sincerely, Louia. Bym

Lori A. Byrne, Environmental Review Coordinator Wildlife and Heritage Service MD Dept. of Natural Resources


ER# 2017.0118.mo

Tawes State Office Building – 580 Taylor Avenue – Annapolis, Maryland 21401 410-260-8DNR or toll free in Maryland 877-620-8DNR – dnr maryland gov – TTY Users Call via the Maryland Relay


Stormwater Management (SWM) Concept Plan Draft


Long Branch-Wayne Local Park Concept Plan - Appendix

Long Branch-Wayne Local Park Concept Plan - Appendix

Long Branch-Wayne Local Park Concept Plan - Appendix

Long Branch-Wayne Local Park Concept Plan - Appendix

Application for Stormwater Management Concept

Stormwater Concept Application #			
A. Project Information			
Project Name/Subdivision: Long Branch-Wayne F	Park	_ Property Size/Area	a: <u>8.20</u> Acres
Property Address/Location: 509 University Blvd	E, Silver Spring, N	AD 20901 City/State	Zip
B. Owner/Applicant Information	Address	City/State	Σip
Name M-NCPPC - Montgomery County Departm	ent of Parks Owner's name		Lucas Bonney
Mailing Address 9500 Brunett Avenue, Silver Spri			
Cell Telephone Work Telephone	State <u>301-495-2572</u>	Email lucas.bonney@	Zip Code montgomeryparks.org
C. Engineer Information			
Name Site Resources, Inc Peter Soprano			
Mailing Address <u>14315 Jarrettsville Pike, Phoenix,</u> Cell Telephone Work Telephone D. Type of Application (Check One) See "Stormwater Management Concept Application Categorie Stormwater Concept Site Development Storm	State e <u>443-689-0438</u> es" on the reverse of the Stormwater Manag	nis application for explanati gement Plan	
SPA Preliminary Water Quality Plan (PWQP)	SPA Final W	ater Quality Plan (FW	QP)
SPA Combination PWQP/FWQP	SPA Water C	Quality Inventory	
E. Type of Submittal (Check One)			
New Resubmittal* * For Resubmittal, Revision and Reconfirmation provide origin	Revision		rmation*
Preliminary Plan # (if applicable): Lot(s): Block(s): Subdivision:	P	arcel(s): lunicipality:	
I declare and affirm, under penalty of perjury, that to the best application are correct. I declare that I am the owner of the pr			

Page 1 of 3 Revised 1/4/2017

Phone: 311 in Montgomery County or (240)777-0311 Fax: (240)777-6262 http://www.montgomerycountymd.gov/permittingservices

Application for Stormwater Management Concept

Stormwater Concept Application # Lucas Bonney 05/19/17 Printed Name Signature: Signature Property Owner of Au horized Ager

Page 2 of 3 Revised 1/4/2017

E. Conditions of Approval

At a Minimum, All Stormwater Management Concept applications must include:

- 1. Completed application with original signature.
- 2. Description of application fee category and determination of fee amount submitted separately and attached to the application.
- 3. Check made payable to Montgomery County, MD.
- One (1) cover letter with justification for the proposed Stormwater Management Concept. 4
- 5 One (1) copy of grading or site plan which include:
 - Α. Vicinity map.
 - В. Existing and proposed grading.
 - Impervious areas and improvements. С
 - D. Existing and proposed drainage areas. Location of study points used for calculations. If flows beyond study points converge off-site, give distance to convergence.
 - Ε. Off-site drainage and outfalls.
 - Downstream conditions. F
 - G. If the site drains to an existing storm drain system, provide a schematic drawing of the storm drain layout on 200' scale topography detailing the system from the point of inflow to the existing outfall.
 - The proposed development showing streets; parking lots; topography; 100-year floodplain (cite study approval authority) н and flow paths; existing or proposed easements for storm drains, sewers, and other utilities; building locations; locations of springs, seeps and wetlands; and major soils groups. I.
 - In Special Protection Areas (SPA) One copy of the plans, computations and a sediment control concept must be
 - submitted to the following agencies: DPS, DEP Watershed Management and MNCPPC (Environmental).
 - One (1) copy of notifications to downstream property owners, with receipts, per Executive Regulation 7-02AM.
- 7. One (1) copy of approved Natural Resources Inventory and Forest Stand Delineation for developments that are required to go through preliminary or site plan review.
- The location, type, and hazard class of all proposed on-site stormwater management facilities, including preliminary design. 8. Topography, profiles, and cross sections as necessary to show that the design is feasible and that the correct design assumptions are used.
- 9. Results of in-place soil testing. Refer to Montgomery County "Soil Testing Guidelines for Stormwater Management Practices".
- 10. One (1) copy of computations showing the adequacy of existing public or private drainage systems.

GENERAL NOTES:

6.

- 1. Incomplete or improperly prepared submissions will be returned without review.
- 2. The application package must be submitted in sets and all plans must be folded no larger than 8-1/2" x 14".
- 3. If the project is located in a designated "Special Protection Area" contact MCDPS for additional requirements.
- 4. Applications are not considered received until they are accepted for review.
- 5. DPS may require additional information as deemed necessary during the review process.

STORMWATER MANAGEMENT CONCEPT APPLICATION CATEGORIES:

Stormwater Concept - The first stage of review for projects that will be going to Site Plan. Followed by Site development Concept prior to Site Plan approval

Site Development Stormwater Concept - The final conceptual review stage for projects that will be going to Site Plan.

Combination Concept/Site Development - For all projects that are not going to Site Plan, or for projects that are going through a combined Preliminary/Site Plan process.

SPA PWQP - The first stage of review for Special Protection Area projects that will be going to Site Plan. Followed by FWQP prior to Site Plan approval.

SPA FWQP - The final conceptual review stage for Special protection Area projects that will be going to Site Plan.

Combination SPA PWQP/FWQP - For all projects that are not going to Site Plan, or for projects that are going through a combined Preliminary/Site Plan process or are going to Mandatory Referral.

SPA Water Quality Inventory – A conceptual stormwater and sediment control review for Special Protection Area projects exempt from PWQP/FWQP requirements.

STORMWATER MANAGEMENT REPORT

THE MARYLAND NATIONAL CAPITAL PARK AND PLANNING COMMISSION LONG BRANCH-WAYNE PARK

SILVER SPRING, MARYLAND

May 2017

FOR OWNER / DEVELOPER The Maryland National Capital Park and Planning Commission 9500 Brunett Avenue Silver Spring, MD 20901

> CONTACT Lucas Bonney 301-495-2572

PREPARED BY

14315 Jarrettsville Pike Phoenix, Maryland 21131-0249 410.683.3388

TABLE OF CONTENTS

NARRATIVE	. 2
EXECUTIVE SUMMARY	. 2
PROJECT LOCATION/EXISTING CONDITIONS	. 3
PROPOSED IMPROVEMENTS	. 3
METHODOLOGY	. 4
QUALITY MANAGEMENT SUMMARY	.4
QUANTITY MANAGEMENT SUMMARY	. 5
EROSION AND SEDIMENT CONTROL	. 5
CONCLUSIONS	. 5
APPENDIX A - SWM REQUIREMENTS	
APPENDIX B – QUALITY SWM DESIGN & COMPUTATIONS	
APPENDIX C – QUANTITY SWM DESIGN & COMPUTATIONS	
APPENDIX D – VICINITY MAP	
APPENDIX E – SOILS MAP	
APPENDIX F – FEMA FLOOD PLAIN MAP	

EXECUTIVE SUMMARY

This report has been prepared to accompany a stormwater management (SWM) submission for the proposed improvements for Long Branch-Wayne Park associated with the Maryland National Capital Park and Planning Commission. The park's existing conditions consist of a pavilion, existing parking lot, basketball court, playground area, soccer/baseball field and sand filter. The proposed improvements include removing and replacing the existing with a larger pavilion, improved standard and ADA accessible walkways, retaining walls, proposed parking lots, relocated basketball court, improved soccer field, updated playground, and stormwater management facilities.

LIMITS OF DISTURBANCE	5.19 ACRES
Existing Impervious Area in LOD	0.04 ACRES
TOTAL PROPOSED IMPERVIOUS AREA IN LOD	0.72 ACRES
IMPERVIOUS AREA REQUIRING TREATMENT, IART	0.72 ACRES
Impervious Area Treated	0.73 ACRES
TARGET ESD _v	3,393 ft ³
Provided ESD _v	3,501 FT ³

The following table summarizes required and provided SWM for this New Development.

Table 1: Stormwater Management Executive Summary Table

PROJECT LOCATION/EXISTING CONDITIONS

The project is located on approximately 8.20 acres of land in Silver Spring, Maryland and is owned by the Maryland National Capital Park and Planning Commission. The property is bounded by residential properties to the south and north, University Blvd to the east, and by a tributary of Long Branch to the west.

Currently, the site serves the public with a pavilion, parking lot, basketball court, playground, soccer/baseball field, and a sand filter. The existing sand filter treats a majority of the onsite impervious, including the existing parking lot, and some offsite impervious from University Boulevard. The site is within the Anacostia River watershed and generally drains from the East to the West to Long Branch river adjacent to the property boundary which ultimately drains to the Chesapeake Bay. According to the information contained in the Web Soil Survey, National Cooperative Soil Survey, USDA, the property area is underlain with Hydrologic Soil Group (HSG) B, C, and B/D (assumed as D for computations) soils. Further information on soils can be found in Appendix E.

Based on FEMA's "Flood Map Service Center", Flood Insurance Rate Map (Panel 24033C0038E / eff. 9/16/2016), the site is located in Zone 'X' (Area of Minimal Flood Hazard). See Appendix F for more information.

PROPOSED IMPROVEMENTS

The proposed development includes a 1,900 square foot pavilion, adjacent ADA accessible ramps, sidewalks, parking, relocation of existing basketball court, retaining walls, improved soccer field, storm drain, and stormwater management facilities. There will be two (2) microbioretention facilities utilized for SWM treatment as well as non-rooftop disconnect for the majority of the onsite pathways. Additional recharge is provided underneath the proposed playground. Pervious/permeable concrete and other infiltration practices will be considered pending the results of the geotechnical report. It is important to note that the impervious area draining to the existing sand filter remains approximately the same in the proposed conditions. The amount of impervious area draining to the sand filter is treated in the existing conditions; therefore, this same amount of area is also considered already treated in the proposed condition. Computations are contained in Appendix A & B.

The M-NCPPC Long Branch-Wayne Park SRI Job No. 16118 The Concept SWM plan also shows proposed widening of East Wayne Avenue, adjacent path improvements, and a separate SWM facility within the public ROW to treat the public development. The intent of this development is to improve neighborhood circulation adjacent to Long Branch-Wayne Park. SRI and Montgomery County Parks will coordinate with Montgomery County Department of Transportation to receive approval of these improvements. Please note since this development is not within the property boundary, SWM design for the widening is not included in this submittal.

METHODOLOGY

The stormwater management plan for this project complies with the Maryland Stormwater Management Act of 2007 (Act) and revisions as well as additional Montgomery County Department of Public Works requirements. The SWM plan was established via Stormwater Management practices to more adequately reflect Environmental Site Design (ESD) practices to the maximum extent practicable (MEP).

As the calculations in the following section show, the project site is classified as new development. Therefore, treatment of Water Quality Volume is required for 100% of the total impervious area within the LOD in the proposed condition. Water Quality volume is treated based upon a target $P_E = 1.0$ inch. Detailed computations are included in Appendix A and B.

Stormwater management requirements are provided within two (2) micro-bioretention facilities and non-rooftop disconnect of site pathways. These facilities satisfy the target water quality volume and the 10 year stormwater quantity management requirement via RCN reduction as shown in Appendix C.

QUALITY MANAGEMENT SUMMARY

The new development status is determined from the amount of the existing impervious within the property boundary and the ESD requirements are determined the SWM study area as shown in Appendix A. ESD requirements are summarized in the table below. Detailed computations are provided in Appendix A of this report. Re_V is provided since the target ESD volume (ESD_V) is met. However, supplementary recharge computations are provided showing additional recharge provided beneath the playground area. See the summary table below.

> The M-NCPPC Long Branch-Wayne Park SRI Job No. 16118

Treatment Level	ESD	V	Imperviou Requiring Tr		t		PE
New Development	3,393	cu ft	100% New	0.72	ac	1.00	inches
Total Required	3,393	cu ft	Total IART	0.72	ac	1.00	inches
Total Provided	3,501	cu ft	Total	0.73	ac	1.03	inches

 Table 2: Stormwater Management Summary Table

QUANTITY MANAGEMENT SUMMARY

Where the project meets the required target ESDv, there is a decrease in site runoff for the 10 year storm via the reduced runoff curve number method. Detailed computations are contained in Appendix C of this report. Please reference the Existing and Proposed Drainage Area Maps when reviewing computations.

EROSION AND SEDIMENT CONTROL

Erosion and Sediment Control is provided for the site in accordance with the 2011 Maryland Standards and Specifications for Soil Erosion and Sediment Control. Sediment controls for the site will primarily consist of perimeter controls to contain and filter sediment from erosion during construction. These controls are integrated within the stormwater strategy to minimize and control erosion.

CONCLUSIONS

This report illustrates stormwater quality management (Appendix B) for the proposed site using two (2) micro-bioretention facilities and non-rooftop disconnect of pathways. Stormwater quantity management for the 10-year storm is provided via the reduced runoff curve number method due to the amount of ESDv provided.

The M-NCPPC Long Branch-Wayne Park SRI Job No. 16118

APPENDIX A - SWM REQUIREMENTS

The M-NCPPC Long Branch-Wayne Park SRI Job No. 16118

STORMWATER MANAGEMENT REQUIREMENTS

SITE DATA

SITE AREA:	8.20	acres
LIMIT OF DISTURBANCE	5.19	acres
Proposed Impervious Cover:	0.72	acres
Impervious Area Requiring Treatment:	0.72	acres
Soils:	B & C	
Prop. Impervious (Reconstruct. & New) =	0.72	acres
Ex. Impervious =	0.04	acres
Net Change in Impervious =	0.68	acres
50% Ex. Imp + 100% Net Change Imp =	0.74	acres

EX CONDITIONS

Site Area	8.20	acres
Existing Impervious Cover:	0.04	acres*
% Impervious Cover:	0.5%	
Existing Site I < 40%; Therefore, 1	NEW DEV	/ELOPMENT
A_T Redevelopment = 50%Ex.	0.00	acres
A_T New Development = Prop Ex.	0.72	acres
	0.72	acres IART

This is NOT a Redevelopment project, see New Development

Impervious Area Requiring Treatment = 0.72 acres • Existing and Proposed Impervious numbers do not include 0.46 acres treated by existing sand filter. Impervious area draining to existing sand filter is reduced in the proposed conditions. Therefore, since it is presently treated and not being changed in the proposed condition, this impervious area is not accounted for in the Impervious area requiring treatment computation.

Compute ESD Targets for New Development:

Because the existing site imperviousness is less than 40%, the project is considered new development. Stormwater management shall be addressed according to New Development requirements Therefore, the amount of runoff from the site shall be reduced to a level equivalent to woods in good condition Using Table 5.3 below, determine the target rainfall amount P_E for the appropriate soil type at the proposed percent impervious

Soils	Total Area (Ac.)	Total Prop. Impervious Area (Ac.)
B,C, & D	8.20	0.72 (9% impervious)

	Hydrologic Soil Group B									
%I	RCN*	P _E = 1"	1.2"	1.4"	1.6"	1.8"	2.0"	2.2"	2.4"	2.6"
0%	61									
5%	63									
10%	65									
15%	67	55								
20%	68	60	55	55						
25%	70	64	61	58						
30%	72	65	62	59	55					
35%	74	66	63	60	56					
40%	75	66	63	60	56					
45%	78	68	66	62	58					
50%	80	70	67	64	60					
55%	81	71	68	65	61	55				
60%	83	73	70	67	63	58				
65%	85	75	72	69	65	60	55			
70%	87	77	74	71	67	62	57			
75%	89	79	76	73	69	65	59			
80%	91	81	78	75	71	66	61			
85%	92	82	79	76	72	67	62	55		
90%	94	84	81	78	74	70	65	59	55	
95%	96	87	84	81	77	73	69	63	57	
100%	98	89	86	83	80	76	72	66	59	55

STORMWATER MANAGEMENT REQUIREMENTS

								U 1		
			Hydro	ologic So	il Group	с				
%1	RCN*	P _E = 1"	1.2"	1.4"	1.6"	1.8"	2.0"	2.2"	2.4"	2.6"
0%	74									
5%	75									
10%	76									
15%	78									
20%	79	70								
25%	80	72	70	70						
30%	81	73	72	71						
35%	82	74	73	72	70					
40%	84	77	75	73	71		ĺ	ĺ		
45%	85	78	76	74	71					
50%	86	78	76	74	71					
55%	86	78	76	74	71	70				
60%	88	80	78	76	73	71				
65%	90	82	80	77	75	72				
70%	91	82	80	78	75	72				
75%	92	83	81	79	75	72				
80%	93	84	82	79	76	72				
85%	94	85	82	79	76	72				
90%	95	86	83	80	77	73	70			
95%	97	88	85	82	79	75	71			
100%	98	89	86	83	80	76	72	70		

	Hydrologic Soil Group D									
%I	RCN*	P _E = 1"	1.2"	1.4"	1.6"	1.8"	2.0"	2.2"	2.4"	2.6"
0%	80									
5%	81									
10%	82									
15%	83 🗨									
20%	84 🧹	77								
25%	85	78								
30%	85	78	77	77						
35%	86	79	78	78						
40%	87	82	81	79	77					
45%	88	82	81	79	78					
50%	89	83	82	80	78					
55%	90	84	82	80	78					
60%	91	85	83	81	78					
65%	92	85	83	81	78					
70%	93	86	84	81	78					
75%	94	86	84	81	78					
80%	94	86	84	82	79					
85%	95	86	84	82	79					
90%	96	87	84	82	79	77				
95%	97	88	85	82	80	78				
100%	98	89	86	83	80	78	77			

B soils, P _{E =}	1.00
C soils, $P_{E} =$	1.00

D soils, $P_{E=}$ 1.00

1.00

Avg. $P_{E=}$

Compute Runoff Coefficient (Rv)

Rv = 0.05 + (0.009)(I) = volumetric runoff coefficient Ai = Impervious Cover (Acres) = 0.72 A = LOD (Acres) = 5.19 I = I4.0% Rv = 0.18

The ESDv for the new development area is as	follows: $P_E =$	1.0 inches
$ESD_V = (P_E)(R_V)(A)$, where	Rv =	0.18
12	A =	5.19 acres
Now Dovelopment ESDy =	0.0779 as ft	

New Development ESDv =0.0779 ac-ftNew Development ESDv =3,393 cubic feet

Therefore, **3,393** cu ft of runoff needs to be captured and treated within an ESD practice. If the target ESDv is met channel protection volume and recharge volume are also provided for. However, suggested recharge computations for the project site are shown below.

Suggested Recharge Computations for Project Site

Soil Group	S	Area (Ac.)	% Total	Wgt'd "S"
A	0.38	0.00	0	0.00
В	0.26	5.11	84	0.22
С	0.13	0.72	12	0.02
D	0.07	0.28	5	0.00
Total		6.11	100	0.24

Compute Weighted Specific Recharge Factor (S)

 $Re_v = (S)(R_v)(A)$, where

S = Soil Specific Recharge Factor (from pg. 2.30 MD Stormwater Design Manual)

- S = 0.24
- Rv = 0.18
- A = 5.19 acres

Rev =

0.019 ac-ft

Total

814 cubic feet

814 cubic feet

Summary of Management Required

Treatment Level	ESDv	Impervious Area Requi	ring Treatment
New Development	3,393 cu ft	IART	0.72 acres
Total Required	3,393 cu ft	Total IART	0.72 acres

APPENDIX B – QUALITY SWM DESIGN & COMPUTATIONS

The M-NCPPC Long Branch-Wayne Park SRI Job No. 16118

ESD Practice Design

Existing Sand Filter

Existing DA to Sand Filter*	106,916 sf	2.45 ac
Existing Impervious Area to Sand Filter*	20,204 sf	0.46 ac
Proposed DA to Sand Filter**	79,179 sf	I.82 ac
Proposed Onsite Impervious Area to Sand Filter	20,016 sf	0.46 ac

*As shown on the existing SWM Drainage Area Map. This does not encompass the total area draining to the existing sand filter. See initial SWM report for the sand filter in Appendix B. The impervious provided is the impervious within this drainage area.

**As shown on the SWM plan and the proposed SWM Drainage Area Map. There is additional drainage from University Boulevard that is not shown because it does not impact the site. See initial SWM report for the sand filter in Appendix #.

It is shown that the Drainage area to the existing sand filter is reduced in the proposed conditions; therefore, the impervious area draining to the sand filter is not included in the Impervious Area Requiring Treatment.

Micro-Bioretention #I:

(R_v)(A)

Surface Area	700 sf			
Ponding Depth	1.00 ft			
Planting Media Depth	2.0 ft			
Sand Depth	0.5 ft			
Depth of Stone Above Underdrain	0.5 ft			
Underdrain Pipe	0.5 ft perf. PVC			
Depth of Stone Below Underdrain	1.50 ft	1.50 ft		
Porosity Factor	0.4			
DA to ESD Measures	13,520 sf	0.31 ac		
Impervious to ESD Measures	10,125 sf	0.23 ac		

$ESDv = (\underline{P_{E}})(\underline{R_{v}})(\underline{A})$	$R_V = 0.05 + (0.05)$	0.009)(I); I = Imp	. A / DA		Min. $P_E = 1.0$ inches
12	R _v =	0.72			Target $P_E = .0$ inches
	A = (Drainage	Area to the ESI	D measures)		$Max P_E = 2.6$ inches
	A =	0.31 ad	res		
ESDv Min. =	1.0	x 0.72	x 0.31	=	811 cu feet ESDv required
		12			
ESDv Max =	2.6	x 0.72	x 0.31	=	2,109 cu feet ESDv required
		12			
ESDv Provided =	[(A _f) x (Pon	ding Depth)] + [(A _f)(depth _{filter})	(porosity of	media 0.40)]
ESDv Provided =	700	x I.0 +	(700	x 2.5	x 0.4)
ESDv Provided =	1,400	cu ft provided			
$P_{E} = (\underline{ESD}_{V})(12)$	1,400	× 12.0	=	1.72	inches treated

x 0.31

0.72

Micro-Bioretention #2:			
Surface Area	900 sf		
Ponding Depth	1.00 ft		
Planting Media Depth	2.0 ft		
Sand Depth	0.5 ft		
Depth of Stone Above Underdrain	0.5 ft		
Underdrain Pipe	0.5 ft perf. P	VC	
Depth of Stone Below Underdrain	1.50 ft		
Porosity Factor	0.4		
DA to ESD Measures	19,122 sf	0.44 ac	
Impervious to ESD Measures	14,050 sf	0.32 ac	

$ESDv = (\underline{P_{E}})(\mathbf{R}_{v})(\mathbf{A})$	$R_V = 0.05 + (0.05)$	0.009)(I); I = Imp	o. A / DA		Min. $P_E = 1.0$ inches
12	R _V =	0.71			Target P _E = 1.0 inches
	A = (Drainage	e Area to the ES	D measures)		Max $P_E = 2.6$ inches
	A =	0.44 a	cres		
ESDv Min. =	1.0	x 0.71	× 0.44	=	1,131 cu feet ESDv required
		12			
ESDv Max =	2.6	x 0.71	× 0.44	=	2,942 cu feet ESDv required
		12			
ESDv Provided =	[(A _f) x (Pon	ding Depth)] +	[(A _f)(depth _{filter})	(porosity of	media 0.40)]
ESDv Provided =	900	x I.0 +	(900	x 2.5	× 0.4)
ESDv Provided =	1,800	cu ft providec	I		
$P_{E} = (\underline{ESD}_{V})(12)$	1,800	x 12.0	=	1.59	inches treated
(R _V)(A)	0.71	x 0.44			

Non Rooftop Disconnect

Impervious to ESD Measures	7,600 sf	0.17 ac
Contributing Impervious Length	6.0 ft	
Receiving Pervious Length	4.0 ft	
Impervious Ratio	0.5:1	
Pe	0.5 inches	

According to the Montgomery County Department of Permitting Services' design specifications for nonrooftop disconnect, disconnected runoff must discharge directly to vegetated areas of less than 5% and flow path length shall be at least 10 feet. The provided the flow length is 12 feet.

$ESDv = (\underline{P_{E}})(\underline{R}_{v})(\underline{A})$	$R_V = 0.05 +$	- (0.009)(I%); I = I	mp. A / DA	
12	R _V =	0.95		
	A = (Drain	age Area to the E	SD measures)	
	A =	0.17	acres	
ESDv Provided =	0.5	× 0.95	x.17	
		12		
ESDv Provided =	3()I cu ft provide	d	
$P_{E} = (ESD_{V})(12)$	301	x 12.0	=	0.50 inches treated
(R _V)(A)	0.95	x 0.17		

CONCLUSIONS:

By using ESD practices, the required ESD volume and impervious cover have been managed as shown in the table below.

Facility	ESDv Provided	Impervious Area
Micro-Bioretention #1:	1400 cu ft	0.23 ac
Micro-Bioretention #2:	1800 cu ft	0.32 ac
Non Rooftop Disconnect	301 cu ft	0.17 ac
PROVIDED	3,501 cu ft	0.73 ac
REQUIRED	3,393 cu ft	0.72 ac

Recharge Computations:

Beneath Play	ground Area
$A_f =$	7642
Rev =	$0.40 \ x \ A_f x \ 4"/12"$
Rev =	1528.4

Total Rev Suggested = 814 cu ft	
Total Rev Provided = 1528 cu ft	

APPENDIX C – QUANTITY SWM DESIGN & COMPUTATIONS

The M-NCPPC Long Branch-Wayne Park SRI Job No. 16118

WinTR-55 Current Data Description

--- Identification Data ---

User: Peter Date: 5/11/2017 Project: 16118 - Long Branch-Wayne Park Units: English SubTitle: Existing RCN Values Areal Units: Acres State: Maryland County: Montgomery Filename: Z:\16\16118-MNCPPC Long Branch-Wayne Local Park\07-ENG & DESIGN\SWM\RCN Values for Existing DAs

--- Sub-Area Data ---

Name	Jame Description		Area(ac)	RCN	Тс
Ex. DA-1			6.11	67	

Total area: 6.11 (ac)

--- Storm Data --

Rainfall Depth by Rainfall Return Period

(in)	(in)	10-Yr (in)	(in)	(in)		(in)	(in)
		5.1					
	stribution	Mon Type: Type lrograph: <sta< td=""><td>e II</td><td>County, MD</td><td>(NRCS)</td><td></td><td></td></sta<>	e II	County, MD	(NRCS)		
			========		=======		=======
Peter		16118 - Long Existin Montgomery	ng RCN Va	lues			
		Sub-Area	a Summary	Table			
	(ac)	Time of Concentration (hr)					
		0.000					
Total Area:	6.11 (ac	:)					
					=======		:======
Peter		16118 - Long Existin Montgomery	ng RCN Va	lues			
	Sub-	Area Land Use	and Curv	e Number Det	cails		
Sub-Area				Hydi	rologic	Sub-Area	Curve
	Constan 1 00		Daga 1			E /10/0017	4 • 41 • 0

WinTR-55, Version 1.00.09 Page 1 5/12/2017 4:41:24 PM

Identifie	er Land Use	Soil Group	Area (ac)	Number
Ex. DA-1	Open space; grass cover > 75% (good) Open space; grass cover > 75% (good) Open space; grass cover > 75% (good) Paved parking lots, roofs, driveways Paved parking lots, roofs, driveways Total Area / Weighted Curve Number	B C D B C	4.62 .55 .28 .5 .16 6.11 ====	61 74 80 98 98 67 ==

WinTR-55 Current Data Description

--- Identification Data ---

User:PeterDate:5/11/2017Project:16118 - Long Branch-Wayne ParkUnits:EnglishSubTitle:Proposed RCN ValuesAreal Units:AcresState:MarylandAreal Units:AcresCounty:MontgomeryFilename:Z:\16\16118-MNCPPC Long Branch-Wayne Local Park\07-ENG & DESIGN\SWM\RCN Values for Proposed DAs

--- Sub-Area Data ---

Name	Description	Reach	Area(ac)	RCN	Тс
Prop. DA-1			6.11	72	

Total area: 6.11 (ac)

--- Storm Data --

Rainfall Depth by Rainfall Return Period

2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 1-Yr (in) (in) (in) (in) (in) (in) (in) 3.2 4.2 5.1 5.6 6.3 7.2 2.6 Storm Data Source: Montgomery County, MD (NRCS) Rainfall Distribution Type: Type II Dimensionless Unit Hydrograph: <standard> Peter 16118 - Long Branch-Wayne Park Proposed RCN Values Montgomery County, Maryland Sub-Area Sub-Area Summary Table Sub-Area Drainage Time of Curve Curve Receiving Sub-Area Prop. DA-1 6.11 0.000 72 Total Area: 6.11 (ac) </standard>								
3.2 4.2 5.1 5.6 6.3 7.2 2.6 Storm Data Source: Type II Dimensionless Unit Hydrograph: Standard>	(in)	(in)	(in)	(in)	(in)	(in)	(in)
Dimensionless Unit Hydrograph: <standard> </standard>								
Peter loss loss loss loss loss loss loss los	Dimensionle	ess Unit Hydro	ograph: <sta< td=""><td>ndard></td><td></td><td></td><td></td><td></td></sta<>	ndard>				
Proposed RCN Values Montgomery County, Maryland Sub-Area Drainage Time of Curve Receiving Sub-Area Identifier Area Concentration Number Reach Description (ac) (hr) Prop. DA-1 6.11 0.000 72 Total Area: 6.11 (ac) Peter 16118 - Long Branch-Wayne Park Proposed RCN Values Montgomery County, Maryland Sub-Area Land Use and Curve Number Details Sub-Area Curve								
Sub-Area Drainage Time of Curve Receiving Sub-Area Identifier Area Concentration Number Reach Description Prop. DA-1 6.11 0.000 72 Total Area: 6.11 (ac) Peter 16118 - Long Branch-Wayne Park Proposed RCN Values Montgomery County, Maryland Sub-Area Land Use and Curve Number Details Sub-Area Hydrologic Sub-Area	Peter		Propose	d RCN Va	lues			
Identifier Area Concentration Number Reach Description (ac) (hr) Prop. DA-1 6.11 0.000 72 Total Area: 6.11 (ac) Peter 16118 - Long Branch-Wayne Park Proposed RCN Values Montgomery County, Maryland Sub-Area Land Use and Curve Number Details Sub-Area Hydrologic Sub-Area Curve			Sub-Area	Summary	7 Table			
Prop. DA-1 6.11 0.000 72 Total Area: 6.11 (ac)	Identifier	Area Co	oncentration	Number	Reach	n Descr	ription	
Peter 16118 - Long Branch-Wayne Park Proposed RCN Values Montgomery County, Maryland Sub-Area Land Use and Curve Number Details Sub-Area Mydrologic Sub-Area Curve								
Peter 16118 - Long Branch-Wayne Park Proposed RCN Values Montgomery County, Maryland Sub-Area Land Use and Curve Number Details Sub-Area Hydrologic Sub-Area Curve	Total Area:	6.11 (ac)						
Proposed RCN Values Montgomery County, Maryland Sub-Area Land Use and Curve Number Details Sub-Area Hydrologic Sub-Area Curve				=======				======
Sub-Area Hydrologic Sub-Area Curve	Peter		Propose	d RCN Va	lues			
		Sub-A:	rea Land Use	and Curv	re Number	Details		
WinTR-55, Version 1.00.09 Page 1 5/12/2017 4:40:29	Sub-Area					Hydrologic	Sub-Area	Curve
	WinTR-55, V	Version 1.00.	09	Page 1			5/12/2017	4:40:29

Identifier	Land Use	(Soil Group	Area (ac)	Number
Open spa Open spa	ce; grass cover > 75% ce; grass cover > 75% ce; grass cover > 75% ce; grass cover > 75%	(good) (good) (good)	B C D	3.93 .44 .23	61 74 80
Paved pa	rking lots, roofs, driveways rking lots, roofs, driveways rking lots, roofs, driveways		B C D	1.19 .27 .05	98 98 98
Total Ar	ea / Weighted Curve Number			6.11	72 ==

Watershed Model Schematic

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.5

Legend

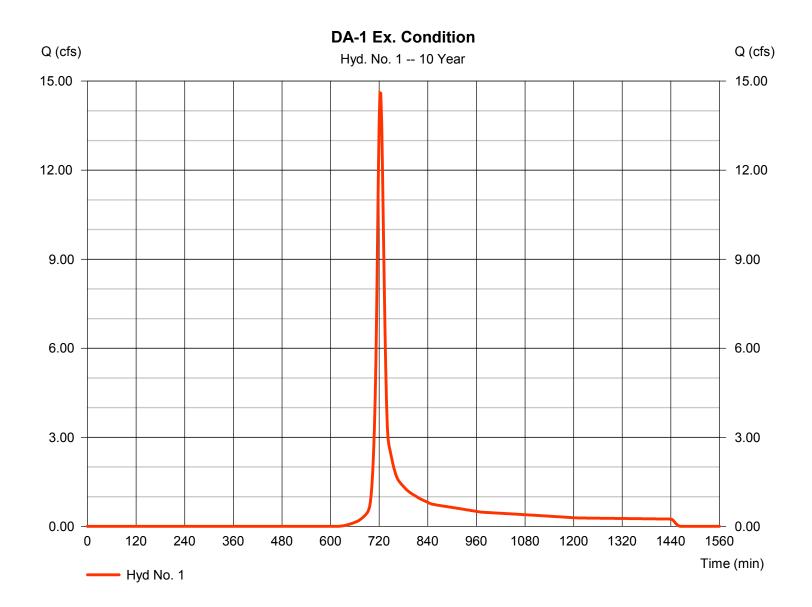
<u>Hyd.</u>	<u>Origin</u>	Description	

SCS Runoff DA-1 Ex. Condition
 SCS Runoff DA-1 Prop. Condition

Project: Z:\16\16118-MNCPPC Long Branch-Wayne Local Park\07-ENG & DESIGN\SWM\@cidatity.00516d@lgp0v17

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.5

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	14.61	2	722	42,031				DA-1 Ex. Condition
3	SCS Runoff	14.01	2	728	49,345				DA-1 Prop. Condition


Hydrograph Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.5

Hyd. No. 1

DA-1 Ex. Condition

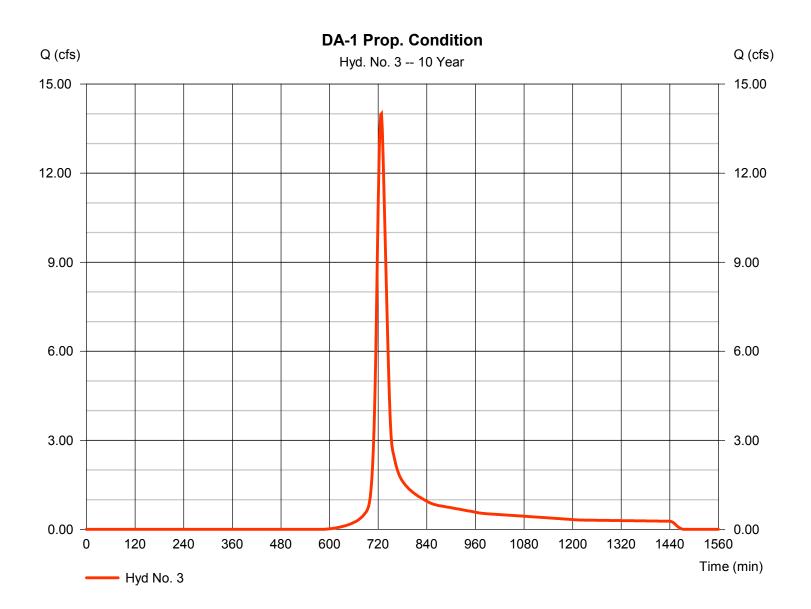
Hydrograph type	= SCS Runoff	Peak discharge	= 14.61 cfs
Storm frequency	= 10 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 42,031 cuft
Drainage area	= 6.110 ac	Curve number	= 67
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 13.80 min
Total precip.	= 5.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.5

Hyd. No. 1

DA-1 Ex. Condition

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.240 = 100.0 = 3.30 = 4.00		0.011 0.0 0.00 0.00		0.011 0.0 0.00 0.00		
Travel Time (min)	= 10.65	+	0.00	+	0.00	=	10.65
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 284.00 = 11.00 = Unpaved =5.35	ł	0.00 0.00 Paved 0.00		0.00 0.00 Paved 0.00		
Travel Time (min)	= 0.88	+	0.00	+	0.00	=	0.88
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 2.61 = 8.63 = 3.00 = 0.060 =1.93		0.00 0.00 0.00 0.015		0.00 0.00 0.00 0.015		
			0.00		0.00		
Flow length (ft)	({0})258.0		0.00		0.00 0.0		
Flow length (ft) Travel Time (min)	({0})258.0 = 2.23	+		+		=	2.23


Hydrograph Report

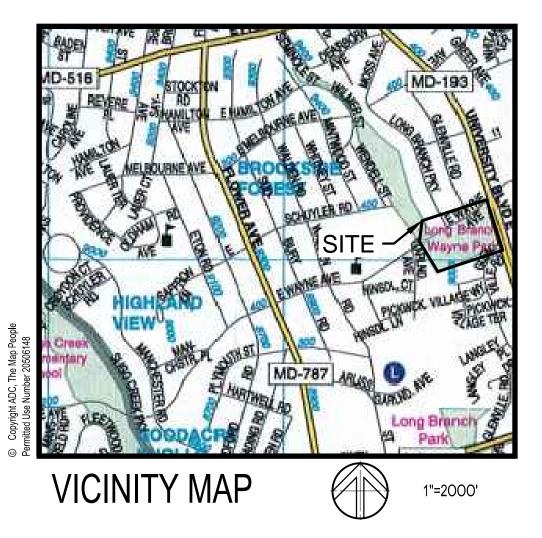
Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.5

Hyd. No. 3

DA-1 Prop. Condition

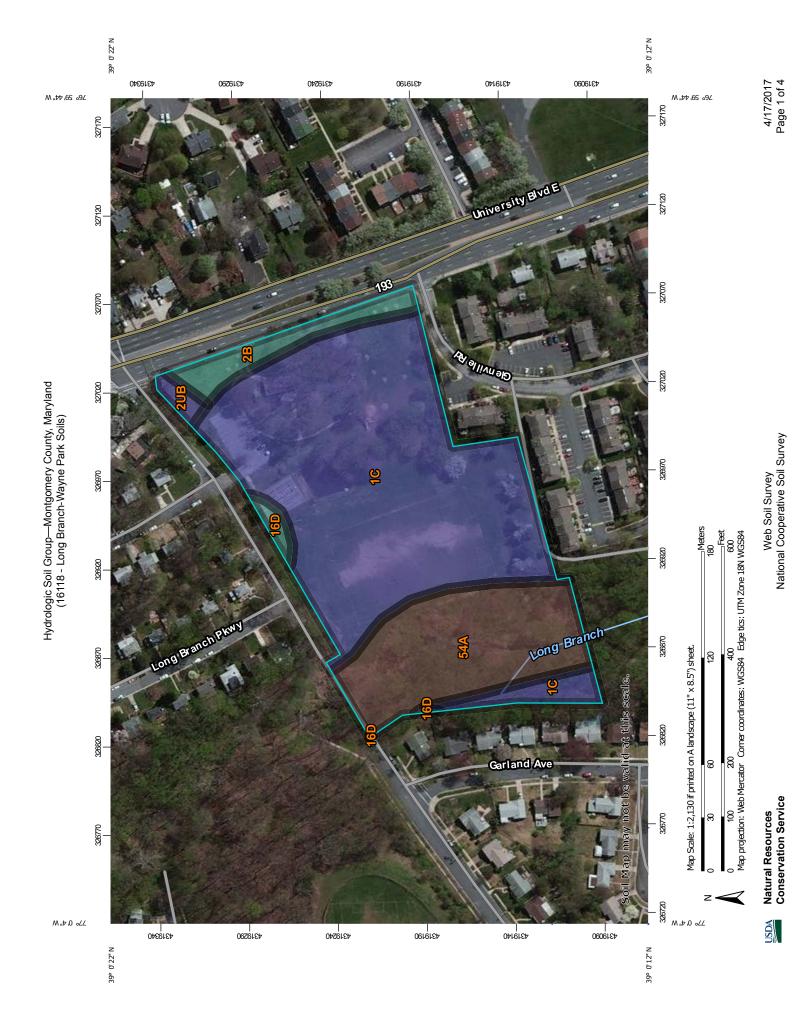
Hydrograph type	= SCS Runoff	Peak discharge	= 14.01 cfs
Storm frequency	= 10 yrs	Time to peak	= 728 min
Time interval	= 2 min	Hyd. volume	= 49,345 cuft
Drainage area	= 6.110 ac	Curve number	= 70
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= TR55	Time of conc. (Tc)	= 21.30 min
Total precip.	= 5.20 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2016 by Autodesk, Inc. v10.5

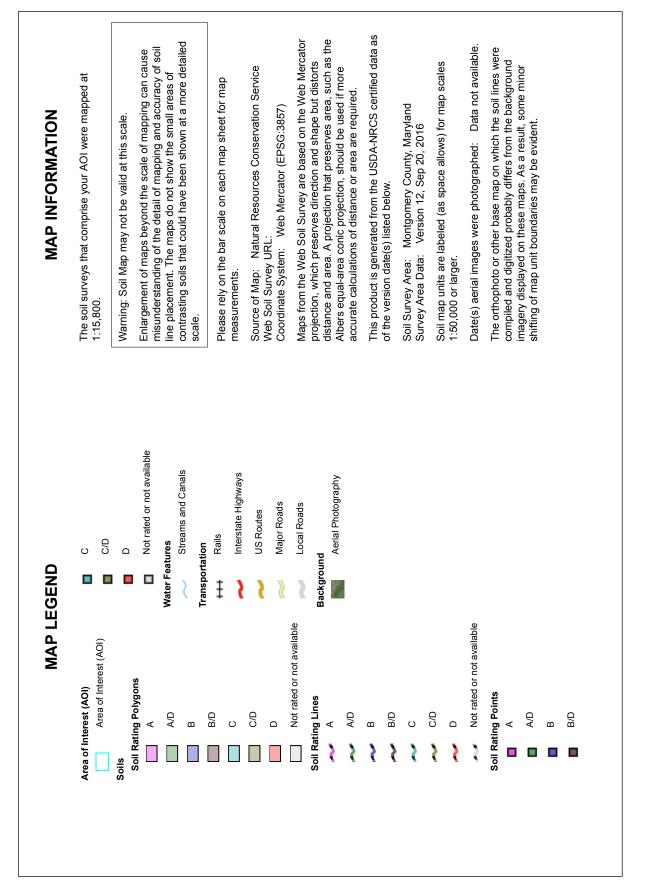

Hyd. No. 3

DA-1 Prop. Condition

Description	A		<u>B</u>		<u>C</u>		<u>Totals</u>
Sheet Flow Manning's n-value Flow length (ft) Two-year 24-hr precip. (in) Land slope (%)	= 0.240 = 80.0 = 3.30 = 1.20		0.240 20.0 3.30 1.50		0.011 0.0 0.00 0.00		
Travel Time (min)	= 14.42	+	4.35	+	0.00	=	18.77
Shallow Concentrated Flow Flow length (ft) Watercourse slope (%) Surface description Average velocity (ft/s)	= 92.00 = 3.00 = Paved =3.52		241.00 10.40 Unpave 5.20	d	162.00 1.50 Unpave 1.98	d	
Travel Time (min)	= 0.44	+	0.77	+	1.37	=	2.57
Channel Flow X sectional flow area (sqft) Wetted perimeter (ft) Channel slope (%) Manning's n-value Velocity (ft/s)	= 0.00 = 0.00 = 0.00 = 0.015 =0.00		0.00 0.00 0.00 0.015 0.00		0.00 0.00 0.00 0.015 0.00		
Flow length (ft)	({0})0.0		0.0		0.0		
Travel Time (min)	= 0.00	+	0.00	+	0.00	=	0.00
Total Travel Time, Tc							21.30 min


APPENDIX D – VICINITY MAP

The M-NCPPC Long Branch-Wayne Park SRI Job No. 16118



APPENDIX E – SOILS MAP

The M-NCPPC Long Branch-Wayne Park SRI Job No. 16118

Hydrologic Soil Group—Montgomery County, Maryland (16118 - Long Branch-Wayne Park Soils)

Natural Resources Conservation Service

NSDA

Hydrologic Soil Group

Hydrol	Hydrologic Soil Group— Summary by Map Unit — Montgomery County, Maryland (MD031)						
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI			
1C	Gaila silt loam, 8 to 15 percent slopes	В	5.6	68.3%			
2B	Glenelg silt loam, 3 to 8 percent slopes	С	0.5	5.8%			
2UB	Glenelg-Urban land complex, 0 to 8 percent slopes	В	0.1	1.2%			
16D	Brinklow-Blocktown channery silt loams, 15 to 25 percent slopes	С	0.1	1.2%			
54A	Hatboro silt loam, 0 to 3 percent slopes, frequently flooded	B/D	1.9	23.4%			
Totals for Area of Intere	est	·	8.1	100.0%			

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher APPENDIX F – FEMA FLOOD PLAIN MAP

The M-NCPPC Long Branch-Wayne Park SRI Job No. 16118

FEMA's National Flood Hazard Layer (Official)

Data from Flood Insurance Rate Maps (FIRMs) where available digitally. New NFHL FIRMette Print app available: http://tinyurl.com/j4xwp5e

Print here instead: http://tinyurl.com/j4xwp5e Support: FEMAMapSpecialist@riskmapcds.com | National Geospatial-Intelligence Agency (NGA); Delta State University; Esri | USGS The National Map: Orthoimagery

GEOTECHNICAL ENGINEERING REPORT

MARYLAND-NATIONAL CAPITAL PARK & PLANNING COMMISION LONG BRANCH - WAYNE LOCAL PARK PRELIMINARY DESIGN - STORMWATER MANAGEMENT & SITE RENOVATIONS SILVER SPRING, MARYLAND

Prepared for:

Site Resources 14315 Jarrettsville Pike Phoenix, MD 21131

Prepared by:

SaLUT-TLB 530 McCormick Drive, Suite S Glen Burnie, Maryland 21061

JUNE 20, 2017

Soil and Land Use Technology, Inc. (SaLUT-TLB)

530 McCormick Drive, Suite S • Glen Burnie, MD 21061

(443) 577-1600 www.SaLUTinc.com

JUNE 20, 2017

Site Resources, Inc. 14315 Jarrettsville Pike Phoenix, MD 21131

- Attn: Mr. Kevin Riley, PLA, LEED AP BD+C Senior Project Manager
- Re: Maryland National Capital Park & Planning Commission (M-NCPPC) Long Branch - Wayne Local Park Preliminary Design - Stormwater Management & Site Renovations Silver Spring, Maryland SaLUT-TLB Reference No. 17-0005

Dear Mr. Riley:

Pursuant to your request, we have performed a geotechnical study in support of your design efforts on the referenced project. The following report summarizes the results of our subsurface explorations and laboratory testing and presents geotechnical engineering recommendations for the proposed Stormwater Management (SWM) and Site Renovations at the Long Branch - Wayne Local Park in Silver Spring, Maryland.

We thank you for providing us this opportunity to perform these services for Site Resources, Inc., and look forward to working with you during the implementation of the project. Please do not hesitate to contact us if you have any comments or questions regarding this report, or when we can be of further assistance on this and other projects.

Sincerely, SaLUT-TLB Shannon Hudgins, P.E Senior Project Engineer

Professional Certification: I hereby certify that these documents were prepared or approved by me, and that I am a duly licensed Professional Engineer under the laws of the State of Maryland. License No. <u>28254</u>, Expiration Date: <u>January 17, 2018</u>. SLH

Edul A Dark

Edward Dalton, P.E. Executive Vice-President

TABLE OF CONTENTS

LETTE	R OF T	RANSMITTALI
1.0	INTRO	DUCTION1
2.0	PROJI 2.1 2.2	ECT DESCRIPTION
3.0	SUBS	URFACE EXPLORATION2
4.0	GEOL	OGICAL SETTING2
5.0	SUBS 5.1 5.2 5.3	URFACE CONDITIONS 2 Subsurface Stratigraphy 2 Groundwater 3 Laboratory Tests 3
6.0	CONC 6.1 6.2 6.3 6.4 6.5 6.6	LUSIONS AND PRELIMINARY RECOMMENDATIONS4Ramp Retaining Wall and Pavilion Foundations4Lateral Earth Pressures for Retaining Walls4Concrete Slab and Concrete Walk5Parking Lot Pavement5Stormwater Management Considerations5Site Preparation66.6.1 Demolition, Clearing and Stripping66.6.2 Inspection of Subgrades66.6.3 Fill Material and Compaction7
7.0	RECO	MMENDATIONS FOR ADDITIONAL STUDIES7
8.0	LIMITA	ATIONS7
ΑΤΤΑΟ		TS Ig No. 1 - Site Vicinity Map Ig No. 2 - Test Boring Location Plan
APPE	NDIX A	 Records of Field Testing Record of Soil / Rock Exploration Field Infiltration Test Results
APPE	NDIX B	Laboratory Test Results

- Summary of Laboratory Test Results
- Atterberg Limits
- Gradation Analysis
- USDA Textural Classification Chart
- Moisture-Density Curve

Y:\01 Projects\2016 PROJECTS\Site Resources\MNCPPC Long Branch-Wayne Local Park\Report\Prelim Geotech Report - MNCPPC LBWLP.Doc

1.0 INTRODUCTION

Site Resources, Inc. of Phoenix, MD has been engaged to perform architectural and engineering (AE) services for the Long Branch - Wayne Local Park project in Silver Spring, Maryland. To perform the geotechnical engineering design services, Site Resources retained **SaLUT-TLB**.

The geotechnical scope of services for this study has changed compared to the scope outlined in SaLUT-TLB's approved proposal dated November 28, 2016. A total of 10 test borings were originally proposed, however only 4 test borings are requested for the current scope. The current scope includes providing preliminary recommendations for proposed SWM facilities, renovated pavilion, concrete slab, ramp retaining walls, and the parking lot pavements to develop Schematic Design documents.

2.0 PROJECT DESCRIPTION

2.1 Site Description

The project is located at the Long Branch - Wayne Local Park in Silver Spring, Montgomery County, Maryland. The site is approximately 6 acres and consists of an athletic field for softball/baseball and soccer, playground areas, a basketball court, an asphalt-paved parking lot, pedestrian access paths, and trail paths that includes a pedestrian bridge that crosses over Long Branch in a wooded portion of the park.

The terrain at the project site consists of hills and slopes, with the surface generally sloping downward from east to west before sloping steeply upward west of Long Branch. The areas in the immediate vicinity of the amenities are graded relatively flat.

The surface grades at the site range from approximately $EI.240 \pm at$ Long Branch to $EI.300 \pm on$ the east end of the park. The surface elevations that are referenced are based on the SWM Concept Plan Sheet SWM1.01, dated May 12, 2017 and prepared by Site Resources.

The park property is bounded by East Wayne Street to the north, University Boulevard E to the east, a residential community to the south, and a wooded area and Long Branch to the west. The project location is shown on the attached Drawing No. 1 - Site Vicinity Map.

2.2 Proposed Development

The project consists of the construction of SWM facilities for best management practices, an expanded parking lot, a rehabilitated pavilion, and an access ramp with retaining walls that will comply with the Americans with Disabilities Act (ADA) guidelines. Three (3) locations have been identified for SWM development. The exact size and geometry of the SWM facilities was not known at the time of this report. It is our understanding that infiltration design is being considered for the SWM facilities.

3.0 SUBSURFACE EXPLORATION

To evaluate the subsurface conditions, 4 test borings (B-1 to B-4) were performed at the site on June 5, 2017. The test boring locations were selected by and staked in the field by Site Resources. The approximate test boring locations are shown on the attached Drawing No. 2 – Test Boring Location Plan.

The test boring depths ranged from 10 feet to 20 feet below-grade. Soil samples were obtained from the test borings at select intervals using a split-barrel sampler (spoon) in accordance with the Standard Penetration Test (SPT) procedure ASTM D1586.

Field infiltration tests were performed adjacent to 3 test borings, B-1 to B-3, on June 6, 2017. The field infiltration tests were performed at approximate depths of 2 and 9 feet below-grade and was performed in general accordance with the 2000 Maryland Stormwater Design Manual, Appendix D.1 and the Montgomery County Department of Permitting Services (MCDPS) Soil Testing Guidelines for SWM Practices. Detailed field infiltration test reports are included in Appendix A.

The test borings and infiltration boreholes were backfilled with the soil cuttings after completion of field testing. The soil samples were transported to our Glen Burnie, MD laboratory for testing and storage.

4.0 GEOLOGICAL SETTING

The project site in located within the Piedmont Geographical Province. The natural soil of the Piedmont consists of residual soils that is formed by the chemical and physical weathering of bedrock, and the underlying parent bedrock.

Based on the Geologic Map of the Montgomery County, Detail 12 (1968), the underlain bedrock consists of the Boulder Gneiss rock formation of the Late Precambrian period. The rock is described as "thick-bedded to massive, pebble- and boulder-bearing, arenaceous to pelitic metamorphic rock, typically a medium-grained, garnet-oligoclase-mica-quartz gneiss; locally an intensely foliated gneiss or schist" based on the geology map referenced above.

5.0 SUBSURFACE CONDITIONS

Logs describing the subsurface soil and groundwater conditions encountered at the test boring locations are presented as "Records of Soil / Rock Exploration" in Appendix A. The ground surface elevations noted on the test boring logs were obtained from the SWM Concept Plan Sheet SWM1.01, dated May 12, 2017 and prepared by Site Resources. The descriptive terminology used to classify the soils encountered during this study are explained on the "General Classification Summary for Soil & Rock Exploration" sheet in Appendix A. The subsurface conditions are summarized below.

5.1 Subsurface Stratigraphy

Ground Cover: Topsoil was encountered at the surface at the test boring locations. The topsoil thickness ranged from approximately 3 to 7 inches.

Stratum A (Existing Fill): Existing fill was encountered below the topsoil at the test boring locations, except at B-4. The fill material extended to depths ranging from 3 feet below-grade to the termination depth of 12 feet. The fill material consisted of sandy lean Clay, silty Sand and clayey Sand. Varying amount of gravel and rock fragments were encountered in the fill. Asphalt fragments were encountered in the fill material at Test Boring B-1. The Standard Penetration Test (SPT) N-values obtained in the granular material ranged from 5 to 19 blows per foot (bpf), indicating loose to medium dense relative densities. The N-values in the cohesive material ranged from 3 to 15 bpf, indicating soft to stiff consistencies.

Stratum B (Residual): Residual soil was encountered below the ground cover or existing fill at the test boring locations. The residual soil generally consisted of silty Sand, but also included sandy lean Clay and clayey Sandy. Varying amounts of mica and rock fragments were encountered in the residual soil. The SPT N-values obtained in the granular soils ranged from 3 to 49 bpf, indicating very loose to dense relative densities. The N-values in the cohesive soil was 2 bpf, indicating a very soft consistency.

Stratum C (Weathered Rock): Weathered rock was encountered below the residual soil at test boring B-3. The weathered rock material was visually classified as silty Sand with varying amounts of rock fragments and mica. Weathered rock can visually resemble soil but denser portions may exhibit rock-like qualities. The SPT N-values were in excess of 50 bpf, indicating very dense relative densities.

5.2 Groundwater

Groundwater was not encountered during drilling, at completion, or 24-hours after completion of drilling. Based on the groundwater and soil conditions encountered during the field work, the water table is deeper than the test boring exploration depths. However perched groundwater may be encountered within the existing fill soil at isolated locations. Groundwater conditions will fluctuate throughout the year depending on stream levels, precipitation, seasons, surface drainage, and other climatic factors.

5.3 Laboratory Tests

Representative soil samples obtained during the subsurface exploration program were subjected to laboratory testing which included natural moisture content (ASTM D2216), gradation and hydrometer analysis (ASTM D422), Atterberg limits (ASTM D4318), and modified proctor (ASTM D1557). The test results are presented in Appendix B, and are summarized in the table below.

Taat	Results				
Test	Range	Average			
Moisture Content (%)	16.4 – 27.6	20.8			
Liquid Limit (%)	34 – 48	39.5			
Plastic Index (%)	11 – 19	16			
% Passing No. 4 Sieve	75 – 100	89.8			

Tast		Results
Test	Range	Average
% Passing No. 200 Sieve	38 – 55	47
Optimum Moisture Content (%)		12.3
Maximum Dry Density (pcf)		121

The remaining soil samples are being temporarily stored in our Glen Burnie, Maryland laboratory and are available for review. The samples will be discarded forty-five (45) days following the submittal of this report unless other arrangements are made.

6.0 CONCLUSIONS AND PRELIMINARY RECOMMENDATIONS

The geotechnical conclusions and preliminary recommendations provided in this report are based on the project information provided to us, assumptions detailed in this report, and the subsurface conditions encountered at the site. The following sections provide preliminary recommendations for the proposed expanded parking lot, pavilion, access ramp retaining walls and SWM facilities.

6.1 Ramp Retaining Wall and Pavilion Foundations

We expect that the access ramp retaining walls will retain less than 5 feet of soil and the foundation loads for the new pavilion to be less than 20 kips. Considering the subsurface conditions in the vicinity of the proposed structures (B-4), the structures may be supported by shallow spread footings. We recommend an allowable soil bearing pressure of 1,500 psf for spread footings supported by natural soil. The bearing pressures considers a factor of safety of at least 3 for general shear failure. Wall and column foundations are recommended to be at least 18 inches and 24-inches wide, respectively, for shear considerations.

The exterior foundations should bear at a minimum depth of 2.5 feet below-grade for frost protection. The resultant total settlement of the foundations supported by approved foundation subgrades is not expected to exceed one inch. Differential settlement is estimated to be less than 0.5-inch.

We understand that the foundations may be subjected to lateral loads. We recommend a fluid passive earth pressure of 300H psf, where H is the soil height adjacent to the foundation, for passive resistance of the soil. The passive pressure assumes that the soil will be backfilled as recommended in this report and compacted tight against the spread footing. The top one foot of soil from the finished surface should be neglected for passive resistance. Based on approved foundation subgrades as described in this report, a sliding coefficient of 0.34 may be used when evaluating sliding at the base of the spread footings. A factor of safety of 1.5 should be used when evaluating the passive and sliding resistance.

6.2 Lateral Earth Pressures for Retaining Walls

Site retaining walls will have to be designed to resist lateral earth pressure. Drainage panel should be placed behind the walls (retaining side of the wall) to eliminate hydro-static pressures.

The drainage panel must tie into an adequate drainage system. With the wall drainage system installed to reduce the hydro-static pressure, we recommend an equivalent active earth pressure of 42H psf, where H is the height of the wall. The earth pressures do not consider surcharge loads and slopes at the top of the wall. Use of heavy compaction equipment should not be allowed for backfilling operations behind the walls.

6.3 Concrete Slab and Concrete Walk

New concrete slabs for the pavilion and concrete paved access paths will be constructed in the at the park. A modulus of subgrade reaction (k-value) is commonly used to determine soil support parameters for concrete slab. Based on the subsurface conditions in the vicinity of the pavilion (B-4), the slab subgrades will generally consist of the existing fill and new compacted fill. Therefore, we recommend a modulus of subgrade reaction of 175 pci (considering a 1-ft by 1-ft square plate) for subgrades prepared in accordance with Section 6.6 of this report.

Considering the recommended modulus and the subgrade preparation, the following M-NCPPC concrete walk standard is considered suitable for the proposed access paths:

5.0" Portland Cement Concrete

3.0" Graded Aggregate Base

6.4 Parking Lot Pavement

An expanded parking lot is proposed for this project. We assume passenger vehicles will utilize this area as they visit the park. It is our understanding that the pavement section will consist of hot-mixed asphalt (HMA). The parking lot capacity and average daily traffic (ADT) was not known at the time of this report. However, we expect fire truck access (HS-20 loading) will be required. We have assumed a maximum parking lot capacity of 70 vehicles and an ADT of 160 vehicles per day for this project.

California Bearing Ratio (CBR) tests were not performed for the preliminary design, but should be performed for final design to evaluate the existing soil subgrades for pavement support. Based on the assumed ADT and anticipated soil subgrades in the vicinity of the proposed parking lot (B-2), the M-NCPPC standard is generally considered suitable for the pavement. However we recommend a thicker graded aggregate base layer as indicated in the section provided below:

1.5" HMA Superpave 12.5mm for Surface – PG64-224.0" HMA Superpave 25.0mm for Base – PG64-226.0" Graded Aggregate Base

6.5 Stormwater Management Considerations

Field infiltration tests were performed adjacent to B-1, B-2, and B-3 at depths of approximately 2 and 9 feet below-grade. A 5-inch diameter casing was installed at each location to facilitate infiltration testing. Water was placed in the casing to a depth of 24 inches from the bottom and allowed to pre-soak for a period of 24 hours. The casing was then re-filled to the 24-inch level, and the water level was measured after a one-hour period. This process was repeated three additional times at one hour intervals for a total period of approximately 4 hours. The field

infiltration tests were performed in general accordance the 2000 Maryland Stormwater Design Manual, Appendix D.1 and MC DPS Design Guidelines. The results of the field infiltration tests are summarized below, and the detailed test results are included in Appendix A.

Test Boring ID	Approximate Test Depth/Elevation (ft.)	Average Field Infiltration Rate (in./hr)	USDA Textural Classification	Minimum USDA Infiltration Rate (in./hr)
B-1	9 / El. 258	0.03	SANDY CLAY LOAM	0.17
B-2	9 / El. 260	1.11	CLAY LOAM	0.09
B-3	2 / El. 263	0.00	SANDY LOAM	1.02

Based on the 2000 Maryland Stormwater Design Manual, Appendix D.1 and MC DPS guidelinges, a minimum field infiltration rate of 0.52 inches per hour is required for infiltration practices. Lower infiltration rates preclude the use of infiltration practices. Infiltration practices are also precluded if groundwater or bedrock is within 4 feet of the bottom of the proposed facility. Groundwater or bedrock was not encountered within 4 feet of the test elevations.

For design purposes, we recommend using the lower value of the average field infiltration rate and minimum USDA infiltration rate associated with the textural classification. The field and laboratory test results indicate that infiltration may not be feasible at the test elevations and locations of the infiltration tests.

It is important to note that existing fill material was present at all infiltration test locations and will likely be encountered throughout the project area due to the existing construction. Fill material can vary greatly with a change in location and depth. Therefore SWM facilities with mediums within existing fill and soil not suitable for infiltration practices will likely need an underdrain system or lowering the medium in suitable soil for infiltration practices.

6.6 Site Preparation

6.6.1 Demolition, Clearing and Stripping

The existing pavilion structure will be removed. Site preparation will require complete removal and disposal of any remnants of the existing foundations. It should be noted that any construction remnants left in-place may cause excavation difficulties for new and future construction.

Vegetation, topsoil and roots must be removed in the project area prior to construction. Clearing and stripping should extend several feet beyond the development area if possible, and should be performed in a manner as to minimize disruption of the subgrade soils. Depressions made by clearing operations shall be filled with suitable material and compacted to conform to the adjacent surface. standard is considered suitable for the proposed access paths.

6.6.2 Inspection of Subgrades

We recommend that all subgrades be inspected by a Geotechnical Engineer or an experienced engineering technician. Subgrades should be evaluated and unstable areas identified based on appropriate field testing. Any soft or loose zones that are identified that cannot be re-compacted

should be undercut to a depth, within the area marked by the inspecting Engineer. The depths and extent of undercuts shall be determined by the inspecting Geotechnical Engineer. Deeper undercuts should be avoided, and it is requested that SaLUT-TLB be extended an opportunity to review the conditions warranting any deeper undercuts before undercutting commences. Undercut volume shall be backfilled to grade with compacted fill in accordance with the requirements in this report.

Exposed subgrades must be sloped to facilitate surface runoff away from construction area and to prevent ponding of surface water. If ponding of surface water does occur, it should be removed by pumping, ditching or as otherwise directed by the inspecting geotechnical engineer. During periods of anticipated inclement weather, exposed surfaces shall be graded and sealed to preclude infiltration of surface water.

6.6.3 Fill Material and Compaction

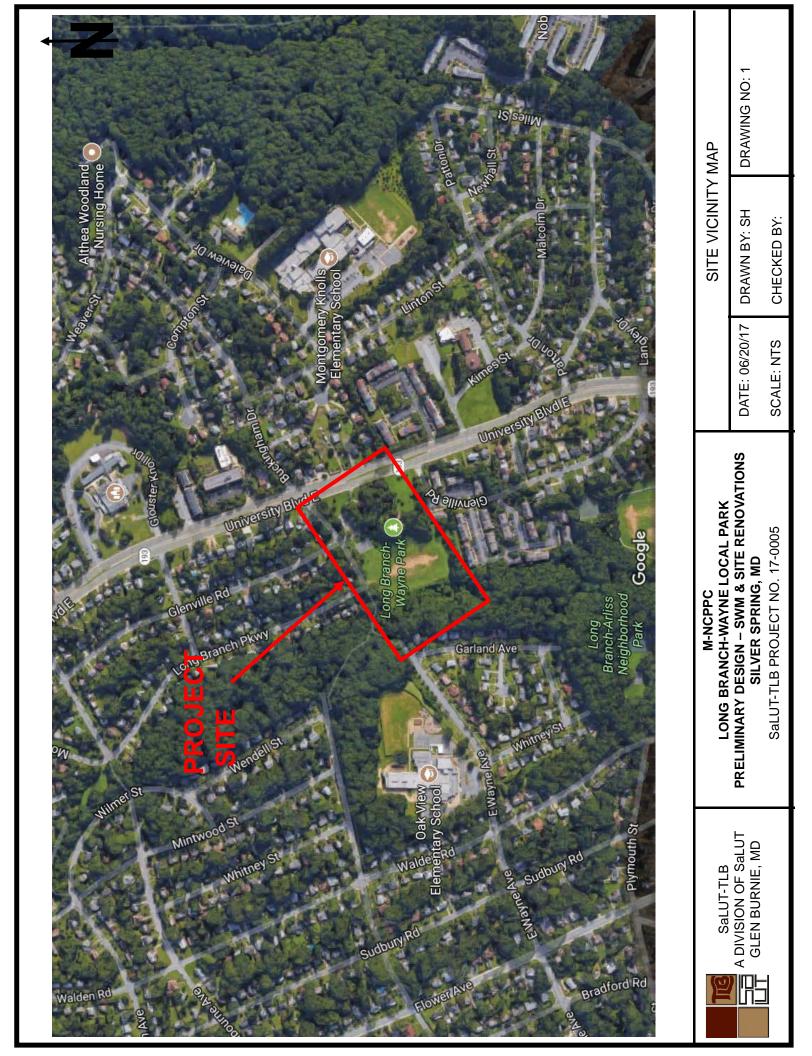
The on-site soils generally consisted of silty Sand and lean Clay. On-site soil that is free of organics and debris is considered to be suitable for reuse as compacted fill. Considering the laboratory test results, the natural moisture content of the on-site soils are likely above the optimum moisture content for compaction. Therefore drying of the soil or blending with dryer material may be required to achieve suitable compaction.

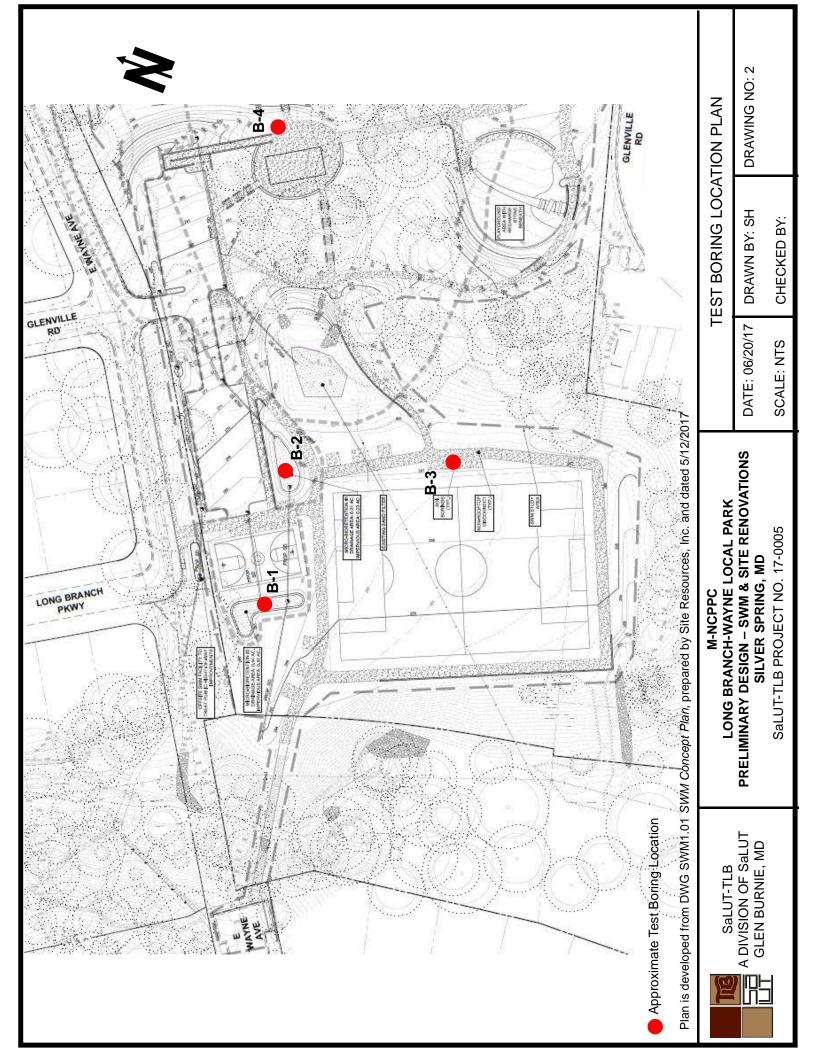
If imported fill is required, we recommend to the material have non-expansive characteristics. The material should have less than 50 percent passing the No. 200 sieve, Liquid Limit of 30 or less, Plasticity Index less than 10, and a minimum dry density of at least 110 pcf.

We recommend that all fill material be placed in lifts having a maximum loose lift thickness commensurate with the equipment being utilized to perform the compaction. In no case should those lifts exceed eight (8) inches. Each lift should be uniformly compacted to at least 95% of the laboratory maximum dry density as determined by ASTM D698. SWM medium subgrades that require infiltration practices should be compacted as directed by the Civil Engineer.

7.0 RECOMMENDATIONS FOR ADDITIONAL STUDIES

A limited subsurface exploration program was performed for this project in order to develop schematic design documents. The recommendations in this report are preliminary. Additional test borings, field and laboratory tests, and geotechnical engineering analyses will be required for final design of the ADA ramp, pedestrian bridge, site retaining walls, and parking lot pavement.


8.0 LIMITATIONS


This report has been prepared to aid in the evaluation of this site and to assist Site Resources in the design and construction aspects of aforementioned project based upon our understanding of the design details, project assumptions, criteria, and utilization of the aspects as outlined herein. All subsurface explorations require the extrapolation of limited amounts of data based on general geologic knowledge. The water level observations and geologic descriptions presented on the accompanying logs have been made with reasonable care and accuracy, but must be considered only an approximate representation of subsurface conditions to be encountered beyond a particular exploratory location.

Variations in the soil conditions noted in this report may be encountered during construction. SaLUT-TLB should be retained to observe subsurface conditions encountered during construction and to verify that conditions are compatible with the findings of this study. Observation services should include fill, footing, and pavement subgrade observations; and fill placement and compaction. If another firm is hired for construction observation services, SaLUT-TLB should be contacted immediately if significant variations are encountered or if the proposed locations or designs are altered.

We have completed these services in accordance with general engineering practices used by members of the profession in the same region and under similar conditions of this project. We make no warranty or guarantee, either expressed or implied, for these services.

APPENDIX A RESULTS OF FIELD TESTING Records of Soil / Rock Exploration

GENERAL CLASSIFICATION SUMMARY FOR SOIL & ROCK EXPLORATION

SOIL

Pa	rticle Size Identification	Relative Proporti	ions
Boulders	- 12 inch diameter or more	Descriptive Term	Percent
Cobbles	- 3 to 12 inch diameter		
Gravel	- Coarse - 3/4 to 3 inches	In accordance with ASTM D	2487 and
	- Fine - 4.75mm to 3/4 inch	ASTM D 2488	
Sand	- Coarse - 2.00mm to 4.75 mm [Sieve #10 to #4]		
	- Medium - 0.4mm to 2.00mm [Sieve #40 to #10]		
	- Fine - 0.075mm to 0.4mm [Sieve #200 to #40]		
Silt/Clay	 less than 0.075mm (Cannot see particles) 		
Silt	- Atterberg limits plot below "A" line		
Clay	- Atterberg limits plot above "A" line		
<u>Cohessi</u>	onless Soils	Cohesive Soils	

Consistency

Medium Stiff

Very Soft

Very Stiff

Soft

Stiff

Hard

N-Value

9-15 blows/ft.

16-30 blows/ft.

>30 blows/ft.

blows/ft. blows/ft.

blows/ft.

0-1

2-4

5-8

Cohessionless Soils

	<u>N-Value</u>
0-4	blows/ft.
5-10	blows/ft.
11-30	blows/ft.
31-50	blows/ft.
>50	blows/ft.
	0-4 5-10 11-30 31-50

Classifications on logs are made by visual inspection.

Standard Penetration Test - Driving a 2.0" O.D., 1 3/8" I.D., sampler a distance of 1.0 foot into undisturbed soil with a 140 pound hammer free falling a distance of 30.0 inches. It is customary for us to drive the spoon 6.0 inches of penetration to seat into undisturbed soil, and then perform the test. The number of hammer blows for seating the spoon and making the tests are recorded for each 6.0 inches of penetration on the drill log (Example: 6-8-9). The standard penetration test resistance or "N"-value can be obtained by adding the last two figures (i.e., 8 + 9 = 17 blows/ft.).

Strata Changes - In the column "Soil Descriptions" on the drill log, the horizontal lines represent estimated strata changes.

Groundwater observations were made at the times indicated. Porosity of soil strata, weather conditions, site topography, etc., may cause changes in the water levels indicated on the logs.

ROCK

Rock Quality Designation (RQD) - The sum of the lengths of pieces of recovered core which are greater than four inches in length, expressed as a percentage of the total length of the core run. If the core has been broken by the drilling process, it is considered to be intact provided the broken fragments are cumulatively greater than 4 inches in length. For this investigation, vertical separations which split the core have not been considered discontinuities when determining RQD.

Recovery (REC) - The total length of core recovered expressed as a percentage of the total length of that coring run.

ROCK CLASSIFICATION

Fresh- No visible signs of discoloration or decomposition.

Slightly Weathered - Slightly discolored. Lower in strength than fresh rock. Dull under hammer.

Moderately Weathered - Significant portions show discoloration and weakening (softening, lighter color). Shows loss of weight. Rock fabric evident.

Highly Weathered - Almost all of the rock shows severe discoloration and weathering. Rock fabric evident in majority of the rock. Completely Weathered (Saprolite) - Rock fabric discernible in a few scattered locations. Effectively reduced to soil and can be broken by hand.

Residual Soil - Reduced to soil. Rock fabric not discernible. Can be easily broken by hand.

SaLUT-TLB Subsurface Explorations & **Geotechnical Engineering Consultants**

RECORD OF SOIL EXPLORATION BORING LOGS GPJ TLB2010.GDT 6/15/17

RECORD OF SOIL / ROCK EXPLORATION

ontracted roject Nar		vne Local Pa	ark SV	/M & S	Site R	enova				Borin Job #	
coject Nar										300 #	
	·				SAM	1PLEF	र				
atum		Hammer Wt	140	lb	Но	le Dian	neter 8 in		For	eman _	J. Freeman
ırf. Elev	267.0 ft	Hammer Drop		in	_ Ro	ock Core			Insp	pector _	S. Hudgins
ate Started _	6/5/17	Spoon Size _	2 in		_ Bo	ring Me	ethodHSA		Dat	e Comp	leted6/5/17
	SOIL DESCRIPTION		STRA	JC.	тш		SA	MPLE			
ELEV. (ft)	Color, Moisture, Density, Plast Proportions		DEPTH (ft)	SYMBOL	DEPTH SCALE	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES
266.8	- 3" of TOPSOIL		0.3	× ×							1. No water encountered
_	Brown, moist, loose to mediun silty SAND , little mica, rock fr and asphalt fragments, (FILL)					I/D	4-4-5-7	1	DS	16	 Borehole offset 5-ft East and infiltration casing at 9-ft
-	[USDA: SANDY CLAY LOAM]			_	I/D	4-8-11-14	2	DS	20	
					5	I/D	4-5-10-12	3	DS	22	
					_	I/D	5-4-5-5	4	DS	24	
					_ <u>10</u>	I/D	2-2-3-5	5	DS	17	
255.0	Bottom of Boring at 12.0 ft		12.0			I/D	3-3-2-3	6	DS	12	
	Bottom of Boning at 12.0 it										
					15						
-					_						
-					<u>20</u>						
-											
					25						
e	AMPLER TYPE	SAMPLE CO		NS	25 GRC	ירזאן ו(NATER DEP	 УТН		RO	
DS - DRIVE PT - PRES	EN SPLIT SPOON SED SHELBY TUBE INUOUS FLIGHT AUGER	D - DISINTE I - INTACT U - UNDISTU	GRATE	C	AT CO AFTE AFTE	OMPLE R R 24 HI	TION <u>Dry</u> ft <u>HRS.</u> RS. <u>Dry</u> ft <u>8.0</u> ft		CF/	A - HOL A - CON	LOW STEM AUGERS ITINUOUS FLIGHT AUGERS VING CASING

Page 1 of 1

RECORD OF SOIL / ROCK EXPLORATION

Contracted With Site Resources Boring # E Project Name Long Branch-Wayne Local Park SWM & Site Renovations Job # 1 Location Silver Spring, MD SAMPLER	17-0005
SAMPLER	
O/WILLER	
Datum 8 in ForemanJ. Freen	
Surf. Elev. <u>269.0 ft</u> Hammer Drop <u>30 in</u> Rock Core Dia. <u>N/A</u> Inspector <u>S. Hudg</u>	
Date Started 6/5/17 Spoon Size 2 in Boring Method HSA Date Completed 6	6/5/17
ELEV SOIL DESCRIPTION STRA 그 것 돈및 SAMPLE	
ELEV. (ft) SOIL DESCRIPTION Color, Moisture, Density, Plasticity, Size Proportions STRA DEPTH (ft) JOR SOR VEX I I SOR VEX I I SOR I SOR I I SOR <th< td=""><td>NOTES</td></th<>	NOTES
268.6 5" of TOPSOIL 0.4 24.5 37	water encountered
to some mica, little silt, gravel and rock	ehole offset 5-ft st and infiltration ing at 9-ft
$\begin{bmatrix} [USDA: CLAY LOAM] \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	x sample obtained n 1-ft to 5-ft
-	
$ \begin{array}{c c} - \\ - \\ - \\ - \\ \end{array} \qquad \qquad$	_
259.0 10.0 × × 10	
- Dark gray, moist, soft, sandy lean CLAY - I/D WOH-WOH 6 DS 24	_
257.0 12.0 -2-2 Bottom of Boring at 12.0 ft	_
	_
	-
	_
	_
20	
	_
	\vdash
	\vdash
25	
SAMPLER TYPE SAMPLE CONDITIONS GROUNDWATER DEPTH BORING ME	
DS - DRIVEN SPLIT SPOON D - DISINTEGRATED AT COMPLETION <u>Dry</u> ft HSA - HOLLOW STE PT - PRESSED SHELBY TUBE I - INTACT AFTERHRSft CFA - CONTINUOUS CA - CONTINUOUS FLIGHT AUGER U - UNDISTURBED AFTER 24 HRS. <u>Dry</u> ft DC - DRIVING CASI RC - ROCK CORE L - LOST CAVED AT <u>9.6</u> ft MD - MUD DRILLING	IS FLIGHT AUGERS SING

RECORD OF SOIL EXPLORATION BORING LOGS.GPJ TLB2010.GDT 6/15/17

Page 1 of 1

Page 1 of 1

RECORD OF SOIL / ROCK EXPLORATION

-	ect Nam tion		THE LOCAL FAIR	1.50		nie r	VEI IUV				Job #	£17-0005	
500						SAN	/IPLE	२					
atum	۱		Hammer Wt	140	lb	ц	ole Diar	neter 8 in		For	eman _	J. Freeman	
			Hammer Drop	30			ock Cor				pector _	S. Hudgins	
ate S	Started _	6/5/17	Spoon Size	2 in		_ Bo	oring Me	ethod HSA		Dat	e Comp	leted6/5/17	
Г								244	/PLE				
	ELEV. (ft)	SOIL DESCRIPTION Color, Moisture, Density, Plastic Proportions	ity, Size DE	rra Pth (ft)	SVMBOL	DEPTH SCALE	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
-	264.4	7" of TOPSOIL).6	<u>, 1 / / .</u>							1. No water encountered	
		Brown and red-brown, moist, lo clayey SAND , WITH rock fragn and gravel, (FILL)	ose, nents			· · · · ·	I/D	3-3-6-7	1	DS	18	2. Borehole offset 5-ft West and infiltration casing at 2-ft	
	262.0	[USDA: SANDY LOAM] Light gray, red-brown, and blac moist, medium dense to dense SAND, some mica, trace rock	k,	3.0	< X	_	I/D	10-10-11-14	2	DS	20		
		fragments				<u>5</u>	I/D	9-11-12-17	3	DS	24		
_	257.0	Ded basses assist some damag		3.0		_	I/D	9-16-24-24	4	DS	24		
	255.0	Red-brown, moist, very dense, SAND, some mica, little rock fragments, (WEATHERED ROCK)		0.0		- 10	I/D	22-23-29-50	5	DS	24		
_		Bottom of Boring at 10.0 ft				_							
						_							
						<u>15</u>							
						_							
						_							
_						25			T 11				
PT	- DRIVE	N SPLIT SPOON SED SHELBY TUBE	AMPLE CONE D - DISINTEGR I - INTACT U - UNDISTURI	ATE	D	AT C AFTE AFTE	OMPLE R R 24 H	WATER DEP TION_ <u>Dry_</u> ft HRS RS <u>Dry_</u> ft 5.1ft		CF	A - HOL A - CON	RING METHOD LOW STEM AUGERS ITINUOUS FLIGHT AUGERS /ING CASING	

RECORD OF SOIL EXPLORATION BORING LOGS GPJ TLB2010.GDT 6/15/17

RECORD OF SOIL / ROCK EXPLORATION

Page 1 of 1

oject Nan		al Park SV	VM & Site	Renova	ations			Job #	17-0005	
cation _	Silver Spring, MD									
			SA	AMPLEF	२					
um	Hammer			Hole Dian			For	eman _	J. Freeman	
f. Elev	293.0 ft Hammer			Rock Core				pector _	S. Hudgins	
e Started _	6/5/17 Spoon Siz	ze <u>2 in</u>		Boring Me	ethod HSA		Dat	e Comp	leted6/5/17	
	SOIL DESCRIPTION	STRA	ч Ч	щ	SA	MPLE				٦
ELEV. (ft)	Color, Moisture, Density, Plasticity, Size Proportions	DEPTH (ft)	SOIL SYMBOL DEPTH	Cond	Blows/6"	No.	Туре	Rec (in)	BORING & SAMPLE NOTES	
292.5	6" of TOPSOIL	0.5	<u>x1 1,</u>						1. No water encountered	
_	Brown, light gray, and black, moist, very loose to loose, silty SAND , some mica, trace rock fragments			I/D	5-4-5	1	DS	18		
-				I/D	2-1-2	2	DS	18		
				I/D	1-1-2	3	DS	16		
-			10 10 10 10 10	I/D	3-2-3	4	DS	16		
280.0	Brown, wet, very loose, clayey SAND	13.0		_						
277.0		16.0	<u>15</u>	– I/D	1-2-2	5	DS	18		
	Brown, red-brown, and light gray, moist, dense, silty SAND , some mica, trace rock fragments	10.0								
				- I/D	20-24-25	6	DS	18		
273.0		20.0	20							
	Bottom of Boring at 20.0 ft									
1										
4										
1										
				-						
			25							
S	AMPLER TYPE SAMPLE	CONDITIC			WATER DEF	тн	1	BO	RING METHOD	
)S - DRIVE PT - PRES	EN SPLIT SPOON D - DISI SED SHELBY TUBE I - INTA	NTEGRATE	D AT		TION <u>Dry</u> ft HRS RS ft		CF	A - HOL A - CON	LOW STEM AUGERS ITINUOUS FLIGHT AUGERS /ING CASING	

Field Infiltration Test Results

SaLUT-TLB

Infiltration Test Data

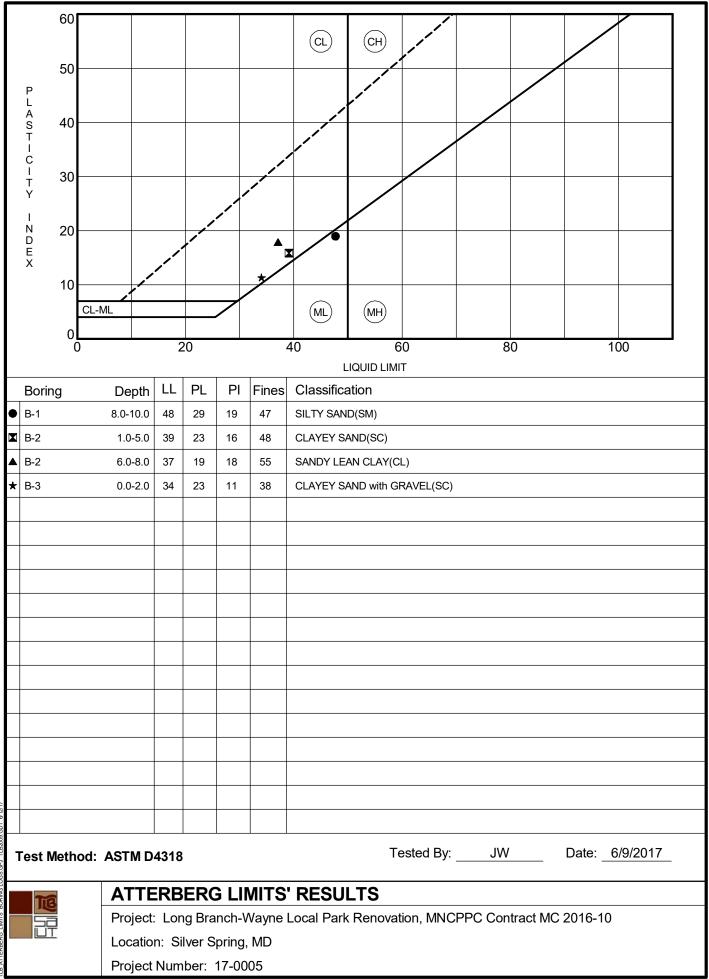
Name of Project: Project No.: Contracted With:	17-0005		Wayne Loca	al Park			
	Silver Spring						
	6/5/2017	5,=					
Technician(s):							
Inspector:							
•							
Boring No.:				B-1			
Surface Elevation		ft.			Casing		
Test Depth		ft.			Stick-up	0.40	_ft.
Test Elevation	258.0	ft.					
1st Hour F	Run	2nd Hou	ur Run	3rd Ho	ur Run	4th Ho	ur Run
Time	Depth (ft)	Time	Depth (ft)	Time	Depth (ft)	Time	Depth (ft)
	2 op ()		2 op ()		- op ()		
0 min	7.34	0 min	7.34	0 min	7.34	0 min	7.35
10 mins		10 mins		10 mins		15 mins	
30 mins		30 mins		30 mins		30 mins	
45 mins		45 mins		45 mins		45 mins	
60 mins	7.34	60 mins	7.34	60 mins	7.35	60 mins	7.35
					-		
Rates (ft.)	0.00		0.00		0.01		0.00
	Average	e Infiltratio	n Rate =	0.03	inch/hr		
	USD4	A Textural Cla	ssification	SANDY CI	AY LOAM		

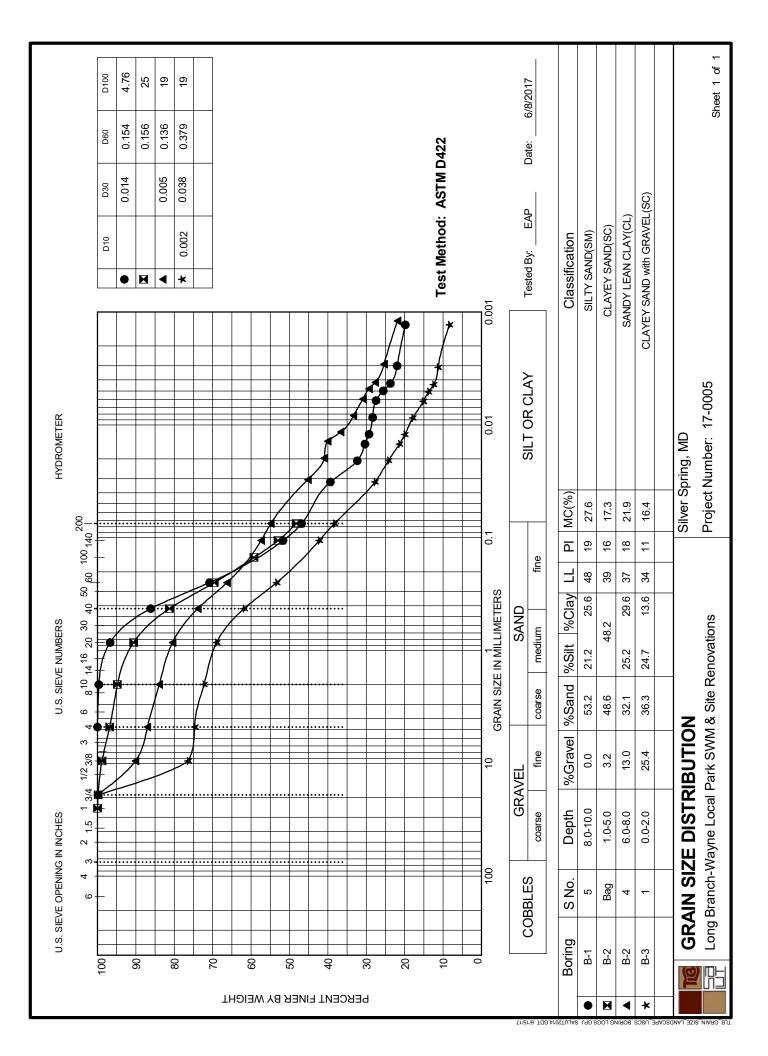
Soil Texture Min. Infiltration Rate 0.17 inch/hr

Infiltration Test Data

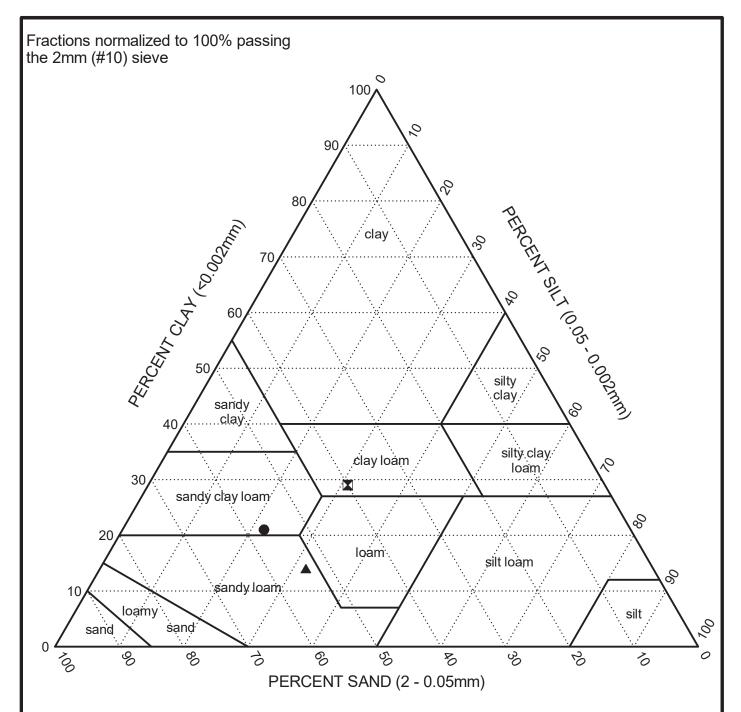
	17-0005 Site Resourd Silver Spring 6/5/2017	ces, Inc.	Wayne Loca	al Park			
Boring No.:		6		B-2	<u> </u>		
Surface Elevation Test Depth Test Elevation	8.0	ft. ft. ft.			Casing Stick-up	0.35	_ft.
1st Hour F	Run	2nd Hou	ur Run	3rd Ho	ur Run	4th Ho	ur Run
Time	Depth (ft)	Time	Depth (ft)	Time	Depth (ft)	Time	Depth (ft)
0 min	7.36	0 min	7.36	0 min	7.36	0 min	7.36
10 mins		10 mins		10 mins		15 mins	
30 mins		30 mins		30 mins		30 mins	
45 mins		45 mins		45 mins		45 mins	
60 mins	7.45	60 mins	7.45	60 mins	7.45	60 mins	7.46
Rates (ft.)	0.09 Averag e	e Infiltratio	0.09 n Rate =	1.11	0.09 _inch/hr		0.10
	USDA	A Textural Cla	assification	CLAY	LOAM		

Soil Texture Min. Infiltration Rate 0.09 inch/hr


Name of Project: Project No.:		Long Branch-	Wayne Loca	al Park			
Contracted With:		ces, Inc.					
	Silver Spring						
	6/5/2017	-					
Technician(s):							
Inspector:	S.H.						
Boring No.:				B-3			
Surface Elevation		ft.			Casing		
Test Depth		ft.			Stick-up	1.30	<u>_</u> ft.
Test Elevation	263.0	ft.					
1st Hour F	Run	2nd Hou	ur Run	3rd Ho	ur Run	4th Ho	ur Run
Time	Depth (ft)	Time	Depth (ft)	Time	Depth (ft)	Time	Depth (ft)
0 min	1.29	0 min	1.29	0 min	1.29	0 min	1.29
10 mins		10 mins		10 mins		15 mins	
30 mins		30 mins		30 mins		30 mins	
45 mins		45 mins		45 mins		45 mins	
60 mins	1.29	60 mins	1.29	60 mins	1.29	60 mins	1.29
Rates (ft.)	0.00		0.00		0.00		0.00
	Average	e Infiltratio	n Rate =	0.00	inch/hr		
	USDA	Textural Cla	ssification	SANDY	LOAM	_	
	Soil Textu	re Min. Infiltra	ation Rate	1.	02	inch/hr	


APPENDIX B LABORATORY TEST RESULTS Summary of Laboratory Test Results

											Sheet 1 of 1
Boring		Depth (ft)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	% < #4 Sieve	% < #200 Sieve	Classification	Water Content (%)	Dry Density (pcf)	Optimum Water Content (%)
B-1	8.(8.0-10.0	48	29	19	100	47	SM	27.6		
B-2	-	1.0-5.0	39	23	16	97	48	sc	17.3	121.0	12.3
B-2	6.	6.0-8.0	37	19	18	87	55	CL	21.9		
B-3	0	0.0-2.0	34	23	11	75	38	sc	16.4		
							MD MD				
	Summary of Laboratory Results Long Branch-Wayne Local Park SWM & Site Renovations	/ of Lat -Wayne Lo	DOLATOLY DCAI Park SV	r Results WM & Site R	enovations	<u>v</u> T	Project Number: 17-0005	7-0005			

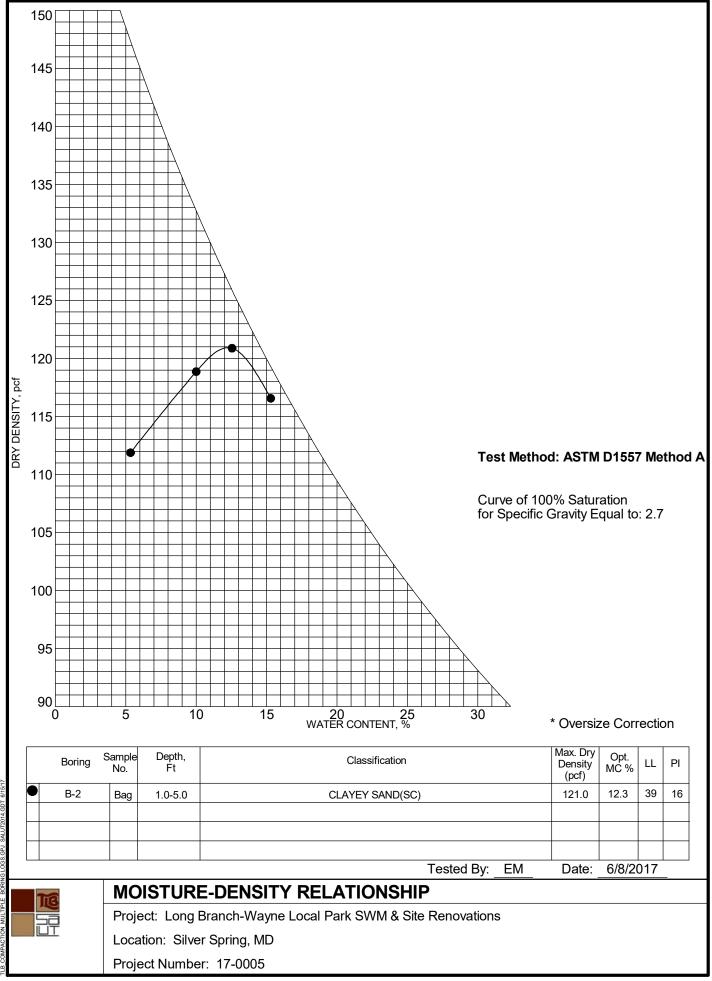

Atterberg Limits

Gradation Analyses

USDA Textural Classification Charts

Test Method: ASTM D422

Boring	Depth	Sand (%)	Silt (%)	Clay (%)	MC(%)	USDA Classification	Tested By	Date
B-1	8.0-10.0	56.6	22.4	21.0	27.6	SANDY CLAY LOAM	EAP	6/8/2017
B-2	6.0-8.0	39.8	31.7	28.5	21.9	CLAY LOAM	EAP	6/8/2017
B-3	0.0-2.0	54.0	32.4	13.6	16.4	SANDY LOAM	EAP	6/8/2017



Project: Long Branch-Wayne Local Park SWM & Site Renovations

Location: Silver Spring, MD

Project Number: 17-0005

Moisture – Density Curve

Detailed Cost Estimate / Phasing Plan

TOTAL PROJECT COST (ALL PHASES)

ITEM	SUBTOTAL
SITE PREPARATION & DEMOLITION (Including Mobilization)	\$230,000
TREE CARE	\$60,000
EROSION & SEDIMENT CONTROL	\$103,000
GRADING/EARTHWORK	\$490,000
STRUCTURES	\$506,000
STORMWATER MANAGEMENT	\$243,800
VEHICULAR PAVEMENT - PARKING LOTS	\$135,385
UTILITIES	\$68,000
HARDSCAPE MATERIALS (PAVING, WALLS, STEPS, STREETSCAPE)	\$575,825
PLAYGROUND	\$466,350
FURNISHINGS, SITE AMENITIES	\$376,150
LANDSCAPING, MICRO-BIORETENTION PLANTS + MAINTENANCE	\$295,400
CONSTRUCTION SUBTOTALS	\$3,549,910
CONSTRUCTION CONTINGENCY (30% of Construction)	\$1,064,973
CONSTRUCTION TOTALS	\$4,614,883
DESIGN CONTRACT WITH CONTINGENCY (13% of Construction Total plus Maintenance & Operations Manual)	\$599,935
STAFF CHARGEBACKS FOR DESIGN (20% of Design Contract with Contingency)	\$119,987
CONSTRUCTION MANAGEMENT & INSPECTIONS (3% x Construction Total)	\$138,446
AS-BUILT DRAWINGS	\$15,000
ELECTRONIC SUBMISSION OF SUBMITTALS	\$10,000
TOTAL COST	\$5,498,000

PHASE 1 PLAN

PHASE 1 COST

PHASE 1

ITEM	QUANTITY	UNIT	UNIT COST Materials & Installation	TOTAL COST
SITE PREPARATION & DEMOLITION (Including Mobilization)			SUBTOTAL	\$80,000.0
TREE CARE			SUBTOTAL	\$30,000.0
EROSION & SEDIMENT CONTROL			CURTOTAL	£38.000.0
	1	1.6	SUBTOTAL	\$38,000.0
Erosion & Sediment Control (3% of Construction Subtotal	1	LS	\$38,000.00	\$38,000.0
GRADING/EARTHWORK			SUBTOTAL	\$62,000.0
Clearing & Grubbing	2	AC	\$6,000.00	\$12,000.0
Excavation, Cut/Fill, including Fine Gradin	1,000	CY	\$40.00	\$40,000.0
Import & Spread Topsoil for new lawn areas (6" depth)	200	CY	\$50.00	\$10,000.0
STORMWATER MANAGEMENT			SUBTOTAL	\$106,300.0
Micro-bioretention Facilitie:	2,500	SF	\$15.00	\$37,500.0
Water Quality Inlet	4	EA	\$8,000.00	\$32,000.0
Drain Pipe (12-15" HDPE)	920	LF	\$40.00	\$36,800.0
STRUCTURES			SUBTOTAL	\$40,000.0
Wooden Boardwalk (vehicle rated)	1,000	SF	\$40.00	\$40,000.0
wooden boardwark (venicie rated)	1,000	01	040.00	\$40,000.0
VEHICULAR PAVEMENT - PARKING LOTS			SUBTOTAL	\$46,485.0
Concrete Curb & Gutter (Upper Parking Lot)	450	LF	\$20.00	\$9,000.0
Heavy Duty Asphalt Paving (Upper Parking Lot)	833	SY	\$45.00	\$37,485.0
			SUBTOTAL	\$210,900.0
HARDSCAPE MATERIALS (PAVING, WALLS, STEPS, STREETSCAPE) 5" Concrete Sidewalk & Site Furnishing Pads with Welded Wire Mesh	350	SY	\$45.00	\$210,900.0
4" Aggregate Subgrade for Concrete Sidewalk	350	SY	\$45.00	\$15,750.0
Asphalt Path (including stone base)	460	SY	\$34.00	\$15,640.0
Asphalt Path (including stone base) - University Blvd 10' sidewalk (SOUTH)	190	SY	\$34.00	\$6,460.0
Concrete Stairs	350	SF	\$130.00	\$45,500.0
Concrete Cheek Walls (12-18 inch height), incl. along conc. stairs/ramps	260	LF	\$60.00	\$15,600.0
Concrete Retaining Walls (18-30 inch height)	20	CY	\$750.00	\$15,000.0
Concrete Retaining Walls (18-60 inch height) - along ADA Ramp	84	CY	\$750.00	\$63,000.0
Precast Seat Walls Wheel Stops	82	LF EA	\$350.00 \$70.00	\$28,700.0 \$1,750.0
Wileel Stops	25	EA	\$70.00	\$1,750.0
PLAYGROUND			SUBTOTAL	\$466,350.0
Playground Equipment	1	LS	\$ 300,000.00	\$300,000.0
Slope Play Features (concrete core)	50	CY	\$500.00	\$25,000.0
Resilient rubber play surface over concrete-stone base	1,500	SF	\$35.00	\$52,500.0
Engineered Wood Fiber Play Surfacing	5,800	SF	\$10.00	\$58,000.0
Play Surfacing SWM recharge sand/stone	250	CY	\$65.00	\$16,250.0
Play Surfacing Underdrainage Concrete curb at playground	5,800	SF	\$2.00 \$20.00	\$11,600.0
concrete carb at playground	150		\$20.00	\$5,000.0
FURNISHINGS, SITE AMENITIES			SUBTOTAL	\$117,250.0
Guardrail Fencing (42 inch min. height) - Ex. SWM edge	90	LF	\$ 100.00	\$9,000.0
Guardrail at Playground (42 inch min. height)	40	LF	\$ 100.00	\$4,000.0
Handrails at Stairs Handrails at Ramps	75 340	LF	\$ 170.00 \$ 170.00	\$12,750.0
Benches (with footers and concrete pad)	340	EA	\$ 2,000.00	\$6,000.0
Trash / Recycling Receptacles (with footers) - 45 Gallon	4	EA	\$ 1,800.00	\$7,200.0
Porta-John Structure	1	AL	\$ 3,000.00	\$3,000.0
Porta-John Structure Enclosure Wood Fencing	50	LF	\$ 50.00	\$2,500.0
Bicycle Rack (with footing)	4	EA	\$ 1,500.00	\$6,000.0
Collapsible Bollards	4	EA	\$ 1,000.00	\$4,000.0
MNCPPC Standard Wood Entrance Sign General Park Standard Signage (M-NCPPC)	1	EA	\$ 2,500.00	\$2,500.0
General Park Standard Signage (M-NCPPC)	- '	AL	\$ 2,500.00	\$2,500.0
LANDSCAPING, MICRO-BIORETENTION PLANTS + MAINTENANCE			SUBTOTAL	\$71,800.0
Lawn establishment including seed bed prep, seed stabilization, water and	1	LS	\$10,000.00	\$10,000.0
aftercare per specifications.				
Shade trees (4-6" CAL)	20	EA	\$1,200.00	\$24,000.0
Evergreen trees (10-12' height)	2	EA	\$600.00	\$1,200.0
Ornamental trees (2" CAL) Micro-Bioretention Plants	2 1,500	EA	\$800.00 \$20.00	\$1,600.0
Two-Year Plant Aftercare and Extended Warranty	1,500	LS	\$5,000.00	\$30,000.0
CONSTRUCTION SUBTOTAL - Phase 1				\$1,269,085.0
CONSTRUCTION CONTINGENCY (30% of Construction)				\$380,725.
CONSTRUCTION TOTAL - Phase 1				\$1,649,810.5
DESIGN CONTRACT WITH CONTINGENCY (13% of Construction Total plus Maintenance & Operations Manual)				\$214,475.
STAFF CHARGEBACKS FOR DESIGN (20% of Design Contract with Continge	ncy)			\$42,895.0
CONSTRUCTION MANAGEMENT & INSPECTIONS (3% x Construction Total)				\$49,494.
AS-BUILT DRAWINGS				\$15,000.
ELECTRONIC SUBMISSION OF SUBMITTALS				\$10,000.

PHASE 2 PLAN

PHASE 2 COST

PHASE 2

ITEM	QUANTITY	UNIT	UNIT COST Materials & Installation	TOTAL COST
SITE PREPARATION & DEMOLITION (Including Mobilization)			SUBTOTAL	\$90,000.00
TREE CARE			SUBTOTAL	\$20,000.00
EROSION & SEDIMENT CONTROL			SUBTOTAL	\$30,000.0
Erosion & Sediment Control (3% of Construction Subtotal)	1	LS	\$30,000.00	\$30,000.00
GRADING/EARTHWORK			SUBTOTAL	\$86,000.00
Clearing & Grubbing	2	AC	\$6,000.00	\$12,000.0
Excavation, Cut/Fill, including Fine Grading	1,500	CY	\$40.00	\$60,000.0
mport & Spread Topsoil for new lawn areas (6" depth)	280	CY	\$50.00	\$14,000.0
STRUCTURES			SUBTOTAL	\$116,000.0
Wooden Steps (with helical piers)	450	SF	\$80.00	\$36,000.0
Picnic Shelter	1	AL	\$ 80,000.00	\$80,000.0
STORMWATER MANAGEMENT Micro-bioretention Facilities	2,700	SF	SUBTOTAL \$15.00	\$78,500.0 \$40,500.0
Water Quality Inlet	4	EA	\$8,000.00	\$32,000.0
Drain Pipe (12-15" HDPE)	150	LF	\$40.00	\$6,000.0
		-	011070741	
VEHICULAR PAVEMENT - PARKING LOTS	600	15	SUBTOTAL	\$50,050.0
Concrete Curb & Gutter (Parking Lots) Heavy Duty Asphalt Paving (Parking Lots)	500 890	LF SY	\$20.00 \$45.00	\$10,000.0 \$40,050.0
noary buty Asphail Faring (Faining LOIS)	030	- 31	\$45.00	φ 4 0,030.0
UTILITIES			SUBTOTAL	\$8,000.0
New Water connection for hose bibs (including plumbing permit) - Contingency	4	A1	\$3 000 00	¢2 000 0
New Water connection for nose bibs (including plumbing permit) - Contingency New Water connection for (possible future) Irrigation system (including plumbing	1	AL	\$3,000.00	\$3,000.0
permit) - Contingency	1	AL	\$5,000.00	\$5,000.0
HARDSCAPE MATERIALS (PAVING, WALLS, STEPS, STREETSCAPE)			SUBTOTAL	\$283,625.0
5" Concrete Sidewalk & Site Furnishing Pads with Welded Wire Mesh	630	SY	\$45.00	\$28,350.0
4" Aggregate Subgrade for Concrete Sidewalk Asphalt Path (including stone base)	630 580	SY SY	\$9.00 \$34.00	\$5,670.0 \$19,720.0
Asphalt Path (including stone base) - University Blvd 10' sidewalk (NORTH)	490	SY	\$34.00	\$16,660.0
Basketball Court (concrete and surfacing)	555	SY	\$35.00	\$19,425.0
Concrete Stairs	500	SF	\$130.00	\$65,000.0
Concrete Cheek Walls (12-18 inch height), including along conc. stairs	205	LF	\$60.00	\$12,300.0
Concrete Retaining Walls (18-30 inch height)	90	CY	\$750.00	\$67,500.0
Precast Seat Walls Wheel Stops	135 25	LF EA	\$350.00 \$70.00	\$47,250.0 \$1,750.0
	20	24	570.00	\$1,750.0
FURNISHINGS, SITE AMENITIES			SUBTOTAL	\$143,700.0
Chainlink Fence at B-Ball Court (8 foot height)	190	LF	\$ 100.00	\$19,000.0
B-Ball Court Hoop Structures Handrails at Stairs	1 140	AL LF	\$ 3,000.00	\$3,000.0
Benches (with footers and concrete pad)	140	EA	\$ 170.00 \$ 2,000.00	\$23,800.0 \$20,000.0
Trash / Recycling Receptacles (with footers) - 45 Gallon	8	EA	\$ 1,800.00	\$14,400.0
Bicycle Rack (with footing)	4	EA	\$ 1,500.00	\$6,000.0
Collapsible Bollards	6	EA	\$ 1,000.00	\$6,000.0
General Park Standard Signage (M-NCPPC)	1	AL	\$ 5,000.00	\$5,000.0
Interpretive Panel Tables and Chairs (4 person)	3	EA	\$ 4,000.00	\$12,000.0
Tables and Chairs (4 person) Tables and Chairs (2 person)	4	EA EA	\$ 3,500.00 \$ 2,500.00	\$24,500.0 \$10,000.0
		LA	2,000.00	\$10,000.0
LANDSCAPING, MICRO-BIORETENTION PLANTS + MAINTENANCE			SUBTOTAL	\$117,400.0
Shade trees (4-6" CAL)	20	EA	\$1,200.00	\$24,000.0
Evergreen trees (10-12' height)	6	EA	\$600.00	\$3,600.0
Ornamental trees (2" CAL)	6	EA	\$800.00	\$4,800.0
Micro-Bioretention Plants Two-Year Plant Aftercare and Extended Warranty	2,000	EA LS	\$20.00 \$15,000.00	\$40,000.0 \$15,000.0
Non-Native Invasive (NNI) Plant Removals	3.000	SF	\$10.00	\$30,000.0
	0,000			
CONSTRUCTION SUBTOTAL - Phase 2				\$1,023,275.0
CONSTRUCTION CONTINGENCY (30% of Construction)				\$306,982.5
CONSTRUCTION TOTAL - Phase 2 DESIGN CONTRACT WITH CONTINGENCY (13% of Construction Total plus				\$1,330,257.5
Maintenance & Operations Manual)				\$172,933.4
STAFF CHARGEBACKS FOR DESIGN (20% of Design Contract with Contingence	5 y)			\$34,586.7
CONSTRUCTION MANAGEMENT & INSPECTIONS (3% x Construction Total)				\$39,907.7
PHASE 2 COST				\$1.578.00

PHASE 3 PLAN

PHASE 3 COST

PHASE 3

ITEM	QUANTITY	UNIT	UNIT COST Materials & Installation	TOTAL COST
SITE PREPARATION & DEMOLITION (Including Mobilization)			SUBTOTAL	\$60,000.00
TREE CARE			SUBTOTAL	\$10,000.00
		_	SUBTUTAL	\$10,000.00
EROSION & SEDIMENT CONTROL			SUBTOTAL	\$35,000.0
Erosion & Sediment Control (3% of Construction Subtotal	1	LS	\$35,000.00	\$35,000.00
			OUDTOTAL	62.42.000.0
GRADING/EARTHWORK Clearing & Grubbing	2	AC	SUBTOTAL \$6,000.00	\$342,000.0 \$12,000.0
Excavation, Cut/Fill, including Fine Gradin	2,100	CY	\$40.00	\$84,000.0
Import & Spread Topsoil for new lawn areas (6" depth)	120	CY	\$50.00	\$6,000.0
Import & Spread approved Rectangular Field Athletic Topsoil (12" depth)	1,800	CY	\$50.00	\$90,000.0
Renovate Rectangular Field and runout area including deconsolidation of soil, so testing and amendments.	sil 1	AL	\$150,000.00	\$150,000.0
STORMWATER MANAGEMENT			SUBTOTAL	\$59,000.0
Micro-bioretention Facilitie:	1,000	SF	\$15.00	\$15,000.00
Water Quality Inlet	1	EA	\$8,000.00	\$8,000.00
Drain Pipe (12-15" HDPE)	100	LF	\$40.00	\$4,000.00
Bio-swale Facilities	1,600	SF	\$20.00	\$32,000.00
STRUCTURES			SUBTOTAL	\$350,000.00
Pedestrian Bridge - 125 LF, 8' width	1	AL	\$ 350,000.00	\$350,000.00
VEHICULAR PAVEMENT	700	ev.	SUBTOTAL	\$38,850.00
Heavy Duty Asphalt Paving (East Wayne Avenue) Concrete Curb & Gutter (East Wayne Avenue)	350	SY LF	\$43.00 \$25.00	\$30,100.00
	550	LF	\$20.00	\$6,750.00
HARDSCAPE MATERIALS (PAVING, WALLS, STEPS, STREETSCAPE)			SUBTOTAL	\$81,300.00
5" Concrete Sidewalk & Site Furnishing Pads with Welded Wire Mesh	95	SY	\$45.00	\$4,275.00
4" Aggregate Subgrade for Concrete Sidewalk	95 780	SY	\$9.00	\$855.00
Asphalt Path (including stone base) Concrete Cheek Walls (12-18 inch height), including along conc. stairs	140	SY LF	\$34.00 \$60.00	\$26,520.00
Concrete Retaining Walls (18-30 inch height)	55	CY	\$750.00	\$41,250.00
UTILITIES			SUBTOTAL	\$60,000.00
Irrigation System (including water line connection	1	AL	\$60,000.00	\$60,000.00
FURNISHINGS, SITE AMENITIES			SUBTOTAL	\$115,200.00
Chainlink Fence at Field (8 foot height)	400	LF	\$ 100.00	\$40,000.00
Fitness Equipment (includes concrete pad)	6	EA	\$ 10,000.00	\$60,000.00
Benches (with footers and concrete pad) Trash / Recycling Receptacles (with footers) - 45 Gallon	4	EA	\$ 2,000.00 \$ 1,800.00	\$8,000.00
Tradity Necycling Neceptades (with toolers) - 40 Gallon	4	EA	\$ 1,000.00	\$7,200.00
LANDSCAPING, MICRO-BIORETENTION PLANTS + MAINTENANCE			SUBTOTAL	\$106,200.00
Rectangular Field turf establishment including seed bed prep, seed stabilization, water and aftercare of field per specifications.	1	LS	\$30,000.00	\$30,000.00
Shade trees (4-6" CAL)	10	EA	\$1,200.00	\$12,000.00
Evergreen trees (10-12' height)	3	EA	\$600.00	\$1,800.00
Ornamental trees (2" CAL) Two-Year Plant Aftercare and Extended Warranty	3	EA LS	\$800.00 \$10,000.00	\$2,400.00
Non-Native Invasive (NNI) Plant Removals	5,000	SF	\$10,000.00	\$50,000.00
CONSTRUCTION SUBTOTAL - Phase 3				\$1,257,550.00
CONSTRUCTION CONTINGENCY (30% of Construction)				\$377,265.00
CONSTRUCTION TOTAL - Phase 3				\$1,634,815.00
DESIGN CONTRACT WITH CONTINGENCY (13% of Construction Total plus Maintenance & Operations Manual)				\$212,525.9
STAFF CHARGEBACKS FOR DESIGN (20% of Design Contract with Continger	icy)			\$42,505.1
CONSTRUCTION MANAGEMENT & INSPECTIONS (3% x Construction Total)				\$49,044.4
PHASE 3 COST				\$1,939,000

RECOMMENDED PROJECT - PHASES 1 & 2 PLAN

PHASES 1 & 2 COST

ITEM	PHASE 1	PHASE 2
SITE PREPARATION & DEMOLITION (Including Mobilization)	\$80,000	\$90,000
TREE CARE	\$30,000	\$20,000
EROSION & SEDIMENT CONTROL	\$38,000	\$30,000
GRADING/EARTHWORK	\$62,000	\$86,000
STRUCTURES	\$40,000	\$116,000
STORMWATER MANAGEMENT	\$106,300	\$78,500
VEHICULAR PAVEMENT - PARKING LOTS	\$46,485	\$50,050
UTILITIES		\$8,000
HARDSCAPE MATERIALS (PAVING, WALLS, STEPS, STREETSCAPE)	\$210,900	\$283,625
PLAYGROUND	\$466,350	
FURNISHINGS, SITE AMENITIES	\$117,250	\$143,700
LANDSCAPING, MICRO-BIORETENTION PLANTS + MAINTENANCE	\$71,800	\$117,400
CONSTRUCTION SUBTOTALS	\$1,269,085	\$1,023,275
CONSTRUCTION CONTINGENCY (30% of Construction)	\$380,726	\$306,983
CONSTRUCTION TOTALS	\$1,649,811	\$1,330,258
DESIGN CONTRACT WITH CONTINGENCY (13% of Construction Total plus Maintenance & Operations Manual)	\$214,475	\$172,933
STAFF CHARGEBACKS FOR DESIGN (20% of Design Contract with Contingency)	\$42,895	\$34,587
CONSTRUCTION MANAGEMENT & INSPECTIONS (3% x Construction Total)	\$49,494	\$39,908
AS-BUILT DRAWINGS	\$15,000	
ELECTRONIC SUBMISSION OF SUBMITTALS	\$10,000	
TOTAL COST	\$1,982,000	\$1,578,000

MASTER PLAN REFERENCES

Park Equity Analysis Map

The Park Equity Map was designed to identify high concentrations of lower income households with low walkable access to park entrances and trailheads. This map depicts an index of three factors: Population Density, Median Household Income as a percent of Area Median Income, and Walkable Access to Parks and Trailheads.

AGENCY COORDINATION

Bonney, Lucas

From:	Anyesha Mookherjee <amookherjee@sha.state.md.us></amookherjee@sha.state.md.us>
Sent:	Friday, February 03, 2017 11:15 PM
To:	Bonney, Lucas
Cc:	Claudine Myers; Dave Murnan
Subject:	RE: University Boulevard (MD 193) at Long Branch-Wayne Park
Attachments:	LBW-Four Concept Plans Handout.pdf
Follow Up Flag:	Follow up
Flag Status:	Flagged
Categories:	Red Category

Lucas:

From an access point of view, you have two options:

- 1. All access to be provided via Wayne Avenue, in which case both parking lots (25 spaces each would be aligned along Wayne Avenue- Concept 1 and 2)
- 2. Access provided to one parking lot from MD 193 (University Boulevard) by one way in access road which would exit onto Glenville. The other lot would be still accessed via Wayne Avenue. This is shown in Concept 3 and 4.

SHA would recommend all access to the parking spaces be made via Wayne Avenue as this intersection is already signalized. At this stage, without any projections available I cannot say for sure if this intersection (the left turn lanes along MD 193) has sufficient storage to handle the additional traffic that may be generated. But for now, one may assume that park traffic would rarely coincide with peak hour weekday traffic. From an operational safety standpoint, this access would be preferred too.

Any access from MD 193 would be either a right- in only or a right-in/right-out type. We would not recommend a full movement access point on MD 193 between Wayne Avenue and Glenville Road as this would create operational challenges given that Wayne Avenue and Glenville Road are approximately 560 feet apart. A right-in/right-out access point has the potential of reducing gaps/sight distance for vehicles exiting Glenville Road who now depend on gaps created by the signal at Wayne Avenue to make their turns. Also this type of access would create u turning traffic at a downstream intersection on heavy use days when the parking space fills up.

I am not sure how the right-in/right-out access for North Four Corners Park, also on MD 193 (near the intersection with Brunett Avenue) was approved without doing some further research. However, just looking at the aerials I could hazard a guess. There is no signalized intersection within close proximity of the North Four Corners Park to take advantage of. Also Brunett Avenue forms a T intersection with MD 193 on the opposite side of the park and as such traffic entering/exiting park does not affect Brunett Avenue. There is a residential driveway about 200 feet west of the Park access, however motorists exiting from this driveway do not have a signal close by to provide reliable gaps. The nearest signal is approximately 2000 feet away.

If you want to discuss further, please feel free to give me a call on Monday. I am also cc-ing Claudine from Engineering Systems Team on this, in case I have missed anything. Sorry for the delay...but I did make it by 2/3 ⁽¹⁾

Regards Anyesha