

MEADOWBROOK STABLES

ALTERATION OF THE FLOODPLAIN **COMPUTATIONS AND REPORT**

MARYLAND DEPARTMENT OF THE ENVIRONMENT

PREPARED FOR:

MEADOWBROOK FOUNDATION, INC. 8200 MEADOWBROOK LANE CHEVY CHASE, MD 20815

PROFESSIONAL CERTIFICATION:

I HEREBY CERTIFY THAT THESE DOCUMENTS WERE PREPARED OR APPROVED BY ME, AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE

OF MARYLAND, LICENSE NO.: 17285, **EXPIRATION DATE: MARCH 17, 2021**

GLW JOB #: 98109

DATE: JANUARY 09, 2020

TABLE OF CONTENTS

Project Narrative	3
Floodplain Analysis Summary Table	5
Arena Design	6
Rock Creek's MNCPPC Floodplain on Tax Maps	7
Original HEC-2 Rock Creek Study	9
FEMA Data	17
Re-run of Rock Creek Study in HEC-RAS	20
Existing Conditions with New Sections	32
Proposed Conditions with New Sections	48

Project Narrative

Meadowbrook Stables is located partially with in the floodplain of Rock Creek near the Montgomery County/District of Columbia boundary line. The location is downstream of the East-West Highway, MD-410, bridge. Meadowbrook Stables is located on property owned by MNCPPC-Montgomery County Parks, a bi-county agency, who is the applicant and as such is fee exempt per Wetlands and Waterways Program Application Fee Schedule and Guidelines.

The stable operation is proposing a covered riding pavilion in the South-East corner of the site. The pavilion that is proposed is a non-inhabitable structure used for horse riding events. It is designed to be a flood tolerable structure. The sides of the arena will be open most of the time, to allow for passage of floodwaters without interference. If they are closed, they will be opened in the event of a flood.

There are two studies depicting the 100-year floodplain for Rock Creek, FEMA and the "Rock Creek Stormwater and Water Quality Management Study" (Rock Creek Study) completed in 1977. Both studies route a discharge of (+/-) 14,000 CFS. Both studies reflect approximately the same floodplain elevation at the Meadowbrook Stables site.

The county is recognizing the Rock Creek study as the established 100-year floodplain for this area.

The purpose of this analysis is to analyze the effects of the grading in the Meadowbrook Stables site on the elevation of the floodplain. The grading consists of both cut and fill.

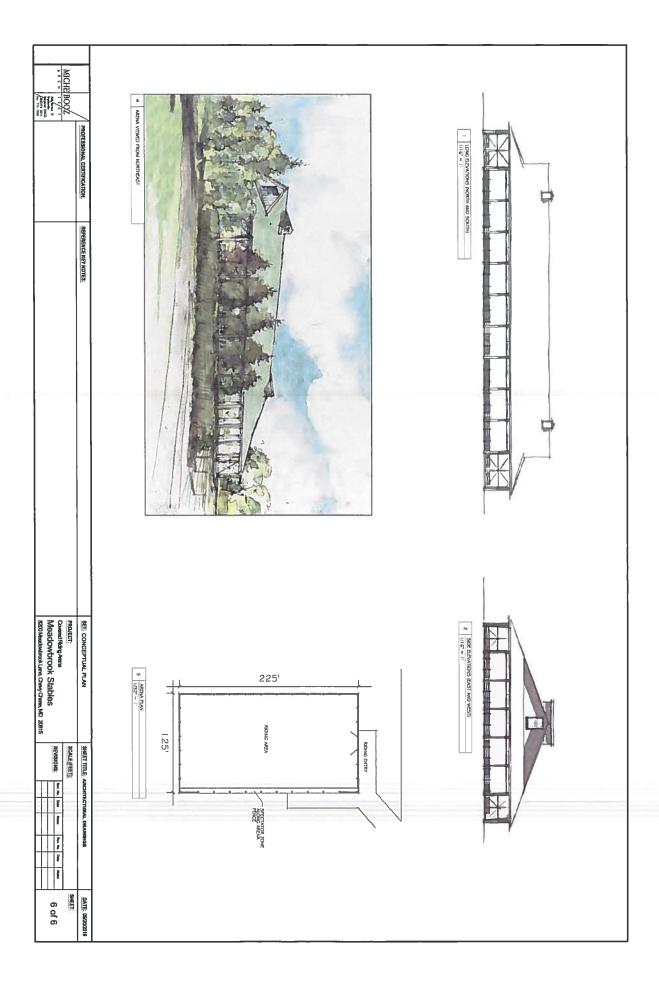
To perform this analysis, the HEC-2 model for the Rock Creek Study was obtained from Park and Planning and used as a base for a new HEC-RAS analysis containing the grading. Three HEC-RAS analyses were performed:

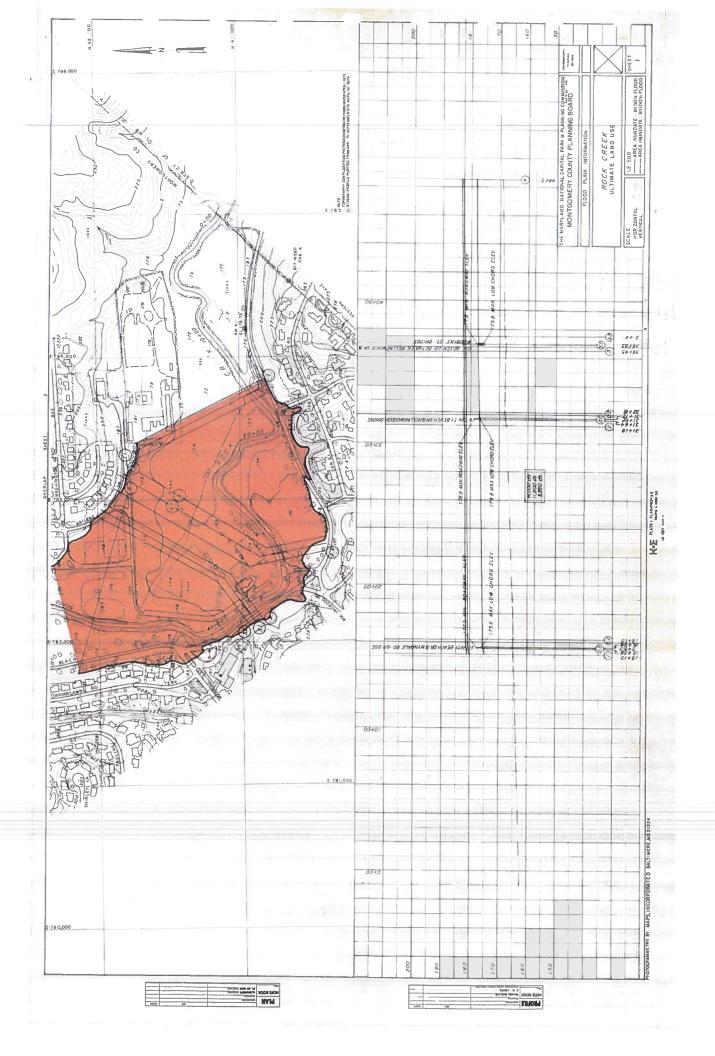
- 1. The input data from the original study was re-run through the HEC-RAS model.
- 2. Several cross sections were inserted in the original study across the Meadowbrook Stables site to more accurately model the floodplain in this area. An existing channel condition model was run with the new sections inserted.
- 3. A proposed channel condition model was run with the same cross sections reflecting the proposed grading conditions.

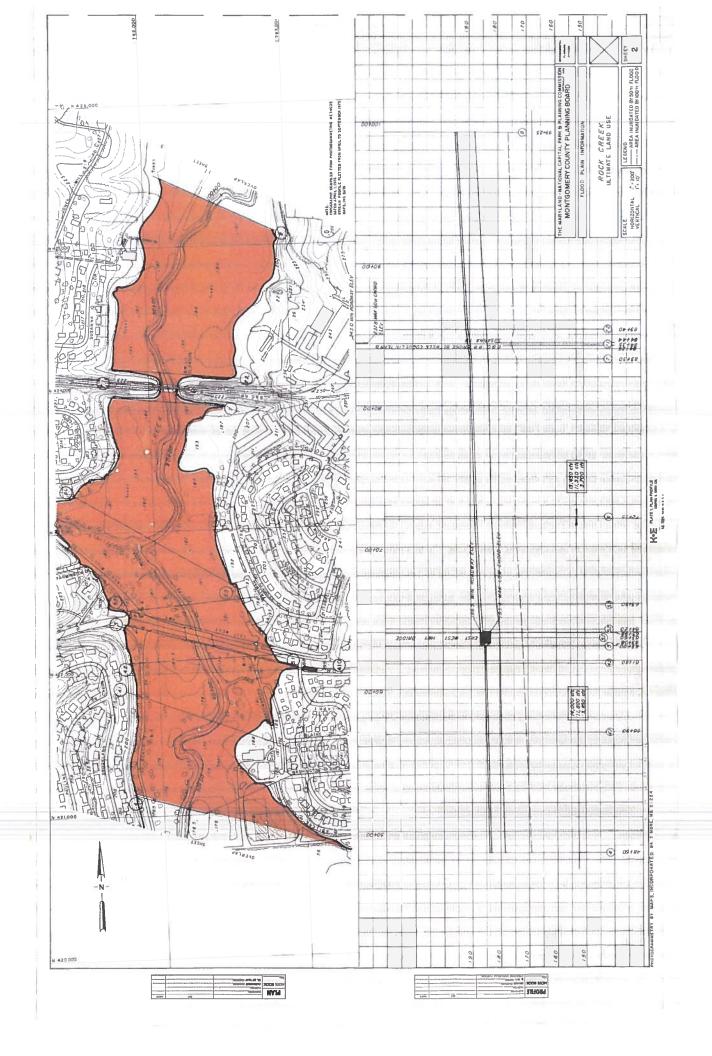
Refer to the table later in the study for comparative results of all three analyses.

The results of the current re-run of the Rock Creek Study HEC-2 (item no. 1 above), were slightly higher than the water surface elevations in the results of the original Rock Creek Study by a maximum of 0.16 feet. The re-run utilized the identical input data from the original study, but was run through a HEC-RAS model, version 5.0 dated February 2016. By re-running the original study through HEC-RAS, a level of consistency could be achieved producing a conclusive comparative analysis.

To conclude the analysis, the results of the floodplain elevations for the existing channel conditions with the new sections inserted (item no. 2 above) was compared to the proposed channel conditions (item no. 3 above).


The results are that there is a maximum of a 0.01' increase in the 100-year floodplain elevations between the existing (item no. 2 above) and the proposed channel conditions (item no. 3 above). Therefore there will be no impact on the 100-year floodplain elevation of the Rock Creek floodplain.


Additionally, the FEMA Rock Creek floodplain has 2 cross sections that run through the proposed arena, Sections F and G. These sections show that the floodway for these sections have a width of 913' and 880' respectively. The proposed pavilion lies outside of the maximum extent of floodway, the site lies 1,020' from the east bank of Rock Creek along Section F and 932' along Section G.


Construction of the covered riding arena and the associated grading in the floodplain is projected to be completed by December 2020. The construction process will follow the schedule on the sediment control plan.

100 Year Floodplain Analysis Summary Table

Original or Inserted Cross Section	Cross Section Number	Original HEC-2 Study (FT)	Item 1: Re-Run of Original HEC-2 Study in HEC- RAS (FT)	Item 2: Existing Conditions With New Sections in HEC-RAS (FT)	Item 3: Proposed Conditions With New Sections in HEC-RAS (FT)
Original	3645	182.42	182.42	182.42	182.42
Original	3687	182.47	182.47	182.47	182.47
Original	3702	182.52	182.53	182.53	182.53
Original	3745	182.56	182.57	182.57	182.57
Inserted	4500	-	-	183.41	183.40
Inserted	4720	-	-	183.75	183.75
Original	4850	183.88	183.99	183.93	183.94
Inserted	5055	-	-	184.19	184.19
Inserted	5255	-	-	184.48	184.48
Original	5690	184.83	184.98	185.06	185.06
Original	6180	185.38	185.54	185.60	185.60

FLOODPLAIN ANALYSIS

ORIGINAL ROCK CREEK STUDY INPUT AND OUTPUT HEC 2 DATA

Rock Creek

STORMWATER & WATER QUALITY MANAGEMENT STUDY

prepared for

MONTGOMERY COUNTY PLANNING BOARD

Royce Hanson: (Chairman)
Mable Granke
Richmond Keeney
George Kephart
Helen Scharf

1977

prepared by CH2M HILL

W9552,A0

The opinions, findings and conclusions expressed in this study are those of CH2M HILL and do not necessarily represent those of the Maryland-National Capital Park and Planning Commission.

. TABLE 3.10
PEAK DISCHARGE DATA FOR WATER SURFACE PROFILE COMPUTATIONS

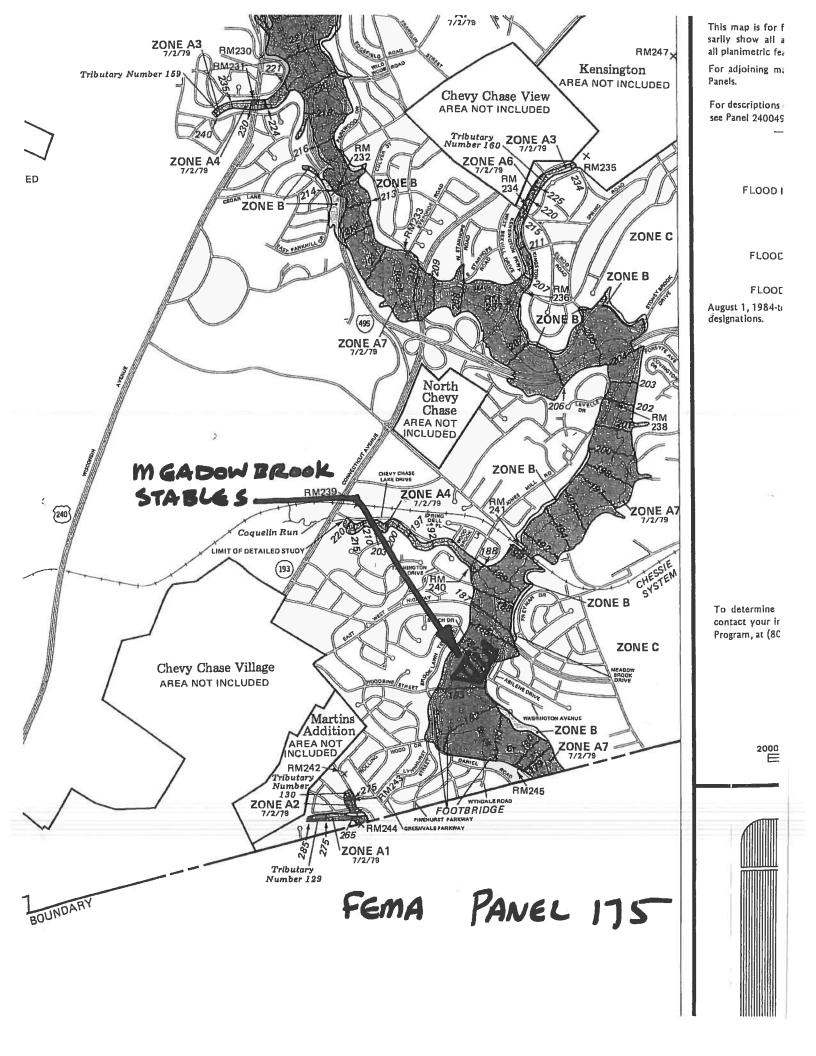
Stream	Stati	oning To	- 1		Existing	eeak.	Flow cf Ultimat		10
	From	10		-	EXISCING		OLCIMAL	<u>e</u>	
Rock Creek	D.C. Line	72+15			13,970		14,000	-	
NOCK CICCH	72+15	188+98			13,420		13,450		
	188+98	311+15			12,310		1.2,340		
	311+15	329+40			11,630		11,650		
	329+40	436+00			11,080		11;090	-	
	436+00	473+68			9,580		9,590		
*	473+68	515+80			9,240		9,260		
	515+80	590+50			7,430 6,420		7,450 6,450		
* NEAS	590+50 658+30	658+30 708+60			5,520		5,550		
	708+60	791+60			3,900		4,150		
	791+60	809+20			3.250		3,610		
	809+20	862+15			Lake	Need		(6)	
	862+15	1021+86			5,300		5,400		
11	1021+86	1121+70			4,100	1.0	4,200		
	1121+70	1170+47			3,100		3,200		
	1170+47	1207+04	٠.		1,090		1,120	**	
	1207#04	1216+33			310		315		
Guarda.	0+00	69+35			2,410		2,410		
Sycamore Creek	69+35	88+30			1,490		,1,490		
	05755	40130			17.50		11,100		
Croydon Park	0+00	56+20	1.5		2,990		2,990		
	56+20	74+25			1,910	-	1,910	9	
								4	
Connecticut Hills	0+00	74+14			3,180		3,180		
23	74+14	88+35			1,840		1,840		(5)
	88+35	95+57			1,270		1,270		
Invance	0+00	56+32			1,320		2,300	*	
Luxmanor	56+32	78+12			700		1,210		
	30,32	70.12			X.		• • - · -		
Kensington Hills	0+00	50+00			2,540		2,540		
	50+00	73+60			1,730		1,730		
						1.0			
Turkey Branch	0+00	63+40			3,520		4,540		-
	63+40	101+55			2,590		3,360		
1887 B	101+55	124+65			1,710		2,180 1,440		
	124+65	151+15			1,130		1,440		če:
Coquelin Run	0+00	37+25			2,070		2,700		
_ Coddellu kan	37+25	80+00			1,450		1,890		
							_		
Crabbs Branch	0+00	73+58			3,100		3,450		
	73+58	113+17			2,450		2,750		
et e	113+17	128+72			1,800		2,050		
	128+72	133+38			880		1,005		
8	0.00	20.70			2 150		3,300	9 1	
Mill Creek	0+00	72+70			3,150				
C	72+70	111+63			2,600		2,800 1,140		
	111+63	132+65			1,050		1,140		
North Branch	0+00	6+48			270		280		
NOT CII Brancii	= 6+48	55+45		9		e Fra			
	55+45	93+30			7,800		8,200		
	93+30	178+73			5,570		5,850		
	178+73	240+10			4,500		4,600		
	240+10	319+05			3,300		3,500		
	319+05	387+70			1,750		1,850		
30	387+70	414+25			920		980		
Southlawn Branch	0+00	49+40			3,100		3,400		
	49+40	84+22			1,700		1,820		
	84+22	, 85+30			1,120		1,200		
	0.00	E0135			4,500		4,800		
	0+00	50+35			000		4/000		
Tributary "B" ,					3,380		3.600		
Tributary "B" ,	50+35 67+60	67+60 93+50			3,380 2,450		3,600 2,700		

6844 684 684 684	X1	NG G R X	SS .		J2		<u>~</u>	T1 T2 T3
1564.000 0.000 13.000 597.000 172.500 171.200 181.000 173.500	1556.000	1510.000 181.000 172.500 173.300	1.000	1.000	NPROF	0.	ICHECK	BACPPC JOB BU
13.000 0.000 173.000 10.000 0.000 0.000 933.000 1005.000	0.000	13.000 0.000 832.000 952.000	2.000 0.150 3950.000	0.000	Johal	2.	QNI	HNCPPC ROCK CREEK STORMWATER MANAGEMENT STUDY JOB HUMBER #9552.B0 ULTIMATE LAND ROCK CREEK BELOW NORBECK 2 YEAR FLOOD
950.000 1.000 181.000 0.000 950.000 173.500 176.800 174.400	0.400	862.000 177.000 172.800 174.000	4.060 0.070 7020.000	-1.000	PRFVS	0.	NINV	K STORNWATE .BO NORBECK
<u>u</u>	00			0.000	XSECV	0.	BIR	ER MANA
1005.000 175.900 0.000 755.000 172.800 173.500 176.000 950.000	0.000	914.000 164.000 862.000 966.000	5.000 0.200 9580.000	0 0.000	XSECH	0.002600	STRT	GEMENT STUDY ULTIMATE LAND YEAR FLOOD
8.000 171.200 201.000 172.500 0.000 1013.000 174.000 181.000	46.000 44.000	1510.000 173.000 166.100 181.000	21.000 0.400 11800.000	00 -0.500	TI Z	0.00	METRIC	USE
8.000 0.000 175.500 0.000 950.000 174.400 431.000 954.000 1062.000	46.000 0.000	1510.000 402.000 867.000 1009.000 0.000	22.000 0.000 14000.000		ALL	0.0	SNIAH	CONDITIONS
8.000 0.000 92.000 177.500 0.000 173.000 164.900 0.000	46.000 464.000	1510.000 173.000 164.900 0.000	0.000			•	4 ::	1
100	00	8 o	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0000		3 X	
0.000 0.000 0.000 0.000 73.500 621.200 0.000 0.000	000	0.000	000		0 000		0 000	5
0.000 0.000 173.000 0.000 1005.000 181.000 172.500 165.600 0.000	0.000	0.000 172.500 173.200 0.000	0.000		o i	ij		
0.000 0.000 908.000 177.500 0.000 876.000 1002.000 0.000	164.900	777.000 914.000 0.000	0.000	0 000				

•						, o		V
?		MC X1	X1 X1	BT X1	G G G G X L	# G R R R R R R R R R R R R R R R R R R	G G G R R L	NO.
3745.000		3702.000	3701.000	3688.000 0.000 4.000 1340.000	3687.000 190.100 176.000 174.000 168.000	3545.000 190.000 175.000 174.500 169.300 174.000	3218.000 190.000 173.000 168.500 176.000	0.000
0 25.000		0.000	0.000	0.000 0.000 1288.000 177.900	24.000 0.000 400.000 1055.000 1317.000 1403.000	25.000 0.000 509.000 1110.000 1291.000 1350.000	21.000 0.000 550.000 1299.000 1427.000	0.000
1298-000	s	0.000	0.000	0.000 0.000 177.900 177.900	1288.000 185.000 173.000 174.000 168.700 184.000	1283.000 185.000 173.000 176.000 167.800 175.500	1285.000 173.000 168.100 181.000	C • C C C
1365-000		0.000 0.200	0.000	0.000 0.000 177.900 0.000	1340.000 70.000 650.000 1165.000 138.000 1423.000	1336.000 60.000 650.000 1191.000 1312.000 1377.000	1345,000 30,000 800,000 1322,000 1544,000	•
180.000		0.400	.00	0000	42.000 181.000 173.000 174.000 177.500	120.000 181.660 173.000 174.000 169.600 175.500	43.000 181.000 174.500 169.000 184.200 0.000	
43.000 235.000		0.000	0.000	7.90	~~~~	450.000 100.000 800.000 1250.000 1333.000 1394.000	13000 1090.000 1343.000 1628.000	A 3 0 0 0 0
43.000 178.000 177.500		0.000		0.000 175.800 0.000	180.000 174.000 177.900 175.800 190.000	180.100 173.500 175.700 175.400 184.000 0.000	180,000 175,000 177,100 185,000 0,000	43,000
0.000 368.000 900.000			0 0 0	1340.000	191.000 1288.000 1345.000 1455.000	170.000 900,000 1263,000 1336,000 1456,000	1267.000 1345.000 1635.000 0.000	0.000
174.500			0.000	177.900	174.500 168.500 175.500 0.000	176.000 174.000 175.800 175.800 190.000 0.000	175.200 177.300 188.500 0.000	0.000
0.000 0.000 0.000 0.000 0.000			0,000	175.800 0.000 0.000	975.000 1290.000 1381.000 0.000 0.000	1045.000 1245.000 1283.000 1341.000 1461.000 0.000	1285.000 1347.000 1665.000	335,000

		0.200	0.000	192.000	108.000	230.000	0.000	0.000	Tugu 1011		<u> </u>
	0 - 000						1	ċ		0.1	NC
		0.000	0.000	0	0.000	40	30.00	9	880.000	184.900	ດດ
	000	0.000	0.000	0.0	0 0 0	11-08	21.00	75.00	2 4	75.0	
	00	185.000	650.000	5 ñ	473.000	.50	471.000	90	0.0	95.00	
	513.000	173.500		81.00	200-00	81.00	10.00	29.00	0.0	86.00	E C
	4			87.00	40.00	00.00	34.00	0.00	0	45.00	1.5
	639.000	0.000	186.000	34.00	186-000	2.00	0.00	000		2.0	X 2
		196.000	345,000	0000	000000000000000000000000000000000000000	185.000	532.000	200		00	×
	0.000	-0.200	0.000							6	o G
				10.00	6.00	85.500	0.000	2-800	1	6308.000	×
	172.100	0.200	0000	128.000	170.000	0.00	00	3			
							ů	0.00		0.00	ر ا ا
	•	0.000	0.000	00	. 00	500	53.00	90.00		85.00	3 5
	0.000	0	0.000	00.00	55,00	180.000	661.000	175.000	586.000	175.000	C P
	1080.000	181.500	850,000	71.60	5.00	00	00.50	86.50		191.00	<u>유</u> }
100	510.000	179.000	425.000	180.000	400.000	30.00	61.00	86.00	17.000	80.00	-
	3						1		80.00	80.00	GR
	6	0.000	1096.000	90.0	75.	5.00	04.00	2.00	502.000	171-000	ಲ ೮ ೮
	850.000	177.000	750.000	77.5	60.	2.00	50.00	75.00	00.00	90.00	G R
	482.000	170.800	241.000	185.000	200.000	000 881	504.000	60	00	90.00	**************************************
	0.000	\$10.000	0.000	40.0	5 75	210					>
/						-	.00	0.00	71	95.00	က က
^	0.000		0.000	0000	01.00	77.50	6.00	70.50	901	70.70	G G F
5	1265.000		000 8561	176.000	04.00	77.50	00.50	70.70	52	76.70	G R
\	1142.000		877.000	169.200	28.00	50.50	10.00	76.50	00	77.00	ຄຸດ
_	849.000		824.000	175.500	170.000	186.000	56.000	190-000	26.000	4850.000	米
	435.000	180.100	228-000	1105.000	60.00	40.00	3 . 00	ภ ว	•		
1	0.000			2	gag,	200			4	15.00	GR R
			7.4000	-	435.00	84.00	4.00	175.500	1337.000	168.300	GR.
	1468.000		1365,000	76.40	62.00	76.00	265.00	74.50	166.0	74.50	2 2
	1315,000		311.00	5.50	298.00	3,00	700.00	73.00	0.80	90.00	ر ا ا
ブ	1060.000	174.500	368,000	178.000	35.	180.000	1365 000	2 6	0	45.00	l.
8	500.000		0.000	3.00	3 00	2				12/	

						M	, .
4850.00 14000. 0.35	CCHV= 0.2 3745.00 14000. 0.25 0.000875	3702=00 14000= 0,25 0=000789	3701.00 14000. 0.25 0.000996	NORMAL BRID	3688.00 14000. 0.24 0.000962	NORMAL BRID	0.24 0.000774
15.14 4037. 1.37	00 CEHV= 14.23 10163. 1.27	14.40 10403. 1.22	14.41 11688. 1.37	GE,NRD= 4	14.50 11706. 1.35	DGE, NRD= 4	1-21
183.64 3814. 5.31	182.53 3031. 3.92 43.	182.50 2672. 3.74	182.51 1273. 2.07	HIN ELTRO	182.50 1249. 2.04	4 MIN ELTRD	3.71
0.00 6148. 2.77	0.00 806. 2.05	0.00 925. 1.96	0.00 1039. 2.20	= 177.9	0.00 1045. 2.18	= 177.9	1.95
0.00 2957. 0.135	0.00 7985. 0.135	0.00 8546. 0.135	0.00 8545. 0.135	O MAX ELLC	0.00 8651. 0.135	O MAX ELLC	0.135
183.82 719. 0.054	182.61 774. 0.054	182.57 714. 0.054	182.54 614. 0.054	C= 178.0	182.53 614. 0.054	.C= 177.9	0.054
0.18 2221. 0.072	0.07 393. 0.072	0.06 473. 0.072	0.04 473. 0.072	0	0.04 480. 0.072	90	0.072
1.18 463. 0.079	0.04 279. 0.097	0.00 270. 0.098	0.01 270. 0.098		0.00 267. 0.099		0.099
0.04 67. 168.50 950.71	0.00 40. 168.30 1272.56	0.02 38. 168.10 1329.67	0.00 38. 168.10 1329.66		0.01 38. 168.00 1330.54		168.00 1330.15
176.70 177.20 285.26 1235.98	175.80 176.40 158.83 1431.39	178.00 178.00 89.45 1419.12	178,00 178.00 89.45 1419,11		177.90 177.90 88.79 1419.33		89 ₀ 09

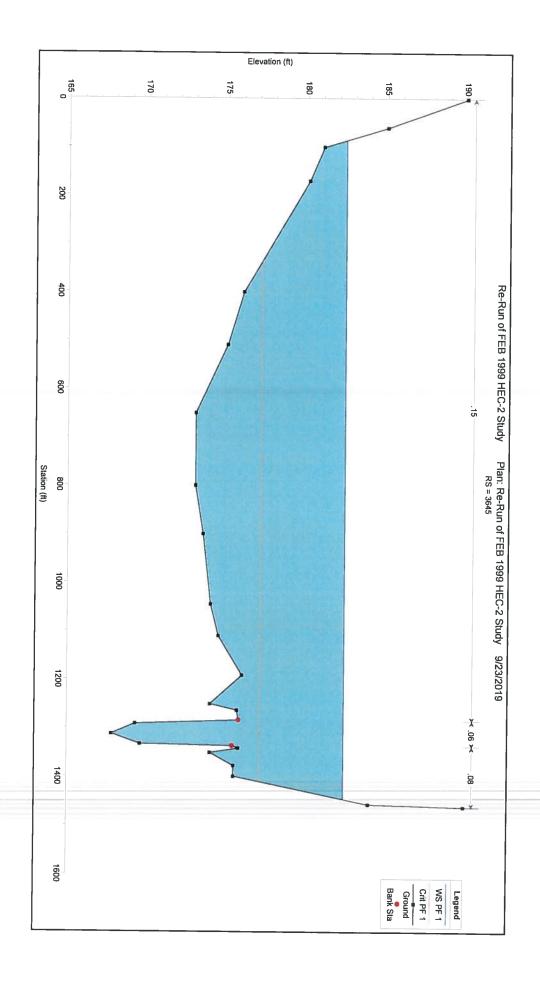

6398.00 14000. 0.47 0.002474	EGPRS 187.56	SPECIAL BRIDGE SB XK 1.00 PRESSURE AND W	CCHV= 0.5 6308.00 14000. 0.46 0.001782	6180.00 14000. 0.45 0.001836	SECNO SECNO	5690.00 14000. 0.42 0.001017
14.40 3270. 1.73	EGLWC 186.12	DGE XKOR 1.50 D WEIR FLOW	00 CEHV= 13.47 2221. 1.49 90.	13.41 2213. 1.50 530.	TROTTX SECTION OF SECT	13.72 1619. 1.26
186.70 6928. 6.94 90.	H3	COFQ 2,80	0.800 185.27 6026. 6.30	185.01 6066. 6.37 490.	CMSET ACH ACH	184° 52 2957° 4°95 840°
0.00 3802. 2.68 90.	QWEIR 1423.	RDLEN 0.00	0.00 5753. 2.59 170.	0.00 5721. 2.61 400.	CRIWS QROB VROB XLOBR	0.00 9424. 2.47 690.
0.00 1890. 0.135	QPR 12552	85°C	0.00 1494. 0.135	0.00 1473. 0.135	WSELK ALOB XNL ITRIAL	0.00 1286. 0.135
187.11 998. 0.054	BARE 1413	0 6 •	185.59 957. 0.054	185.33 953. 0.054	EG ACH XNCH IDC	184.66 597. 0.054
0.41 1417. 0.072	REA TRAPEZO. AREA 1622.	00 141	0.31 2219. 0.072	0.32 2189. 0.072	HV AROB XNR ICONT	0.15 3820. 0.072
1.52 630. 0.072	PEZUID AREA 522•	AREA 3.00	0.25 621. 0.073	0.60 606. 0.074	HL VOL WTN CORAR	0.83 553. 0.076
0.00 94. 172.30 849.19	ELLC 183.40	00 8 8 8 8	0.00 92. 171.80 884.98	0.07 89. 171.60 882.39	OLOSS TWA LI ELMIN TOPWID	0.01 80. 170.80 823.03
179.80 179.90 89.77 938.96	ELTRD	ELCHU 172.30	175.20 175.20 257.18 1142.16	175.00 175.00 259.63 1142.02	BANK ELEV EFT/RIGHT SSTA ENDST	172.00 172.00 245.93 1068.96
		ELCHD 172.10			·	

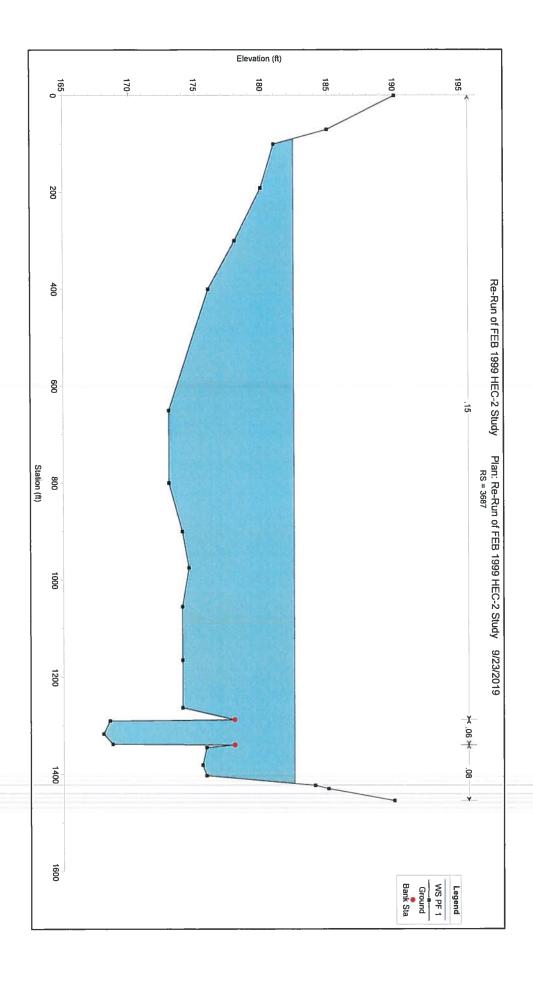
* Instrumentary II Substitional Property of the Property of th

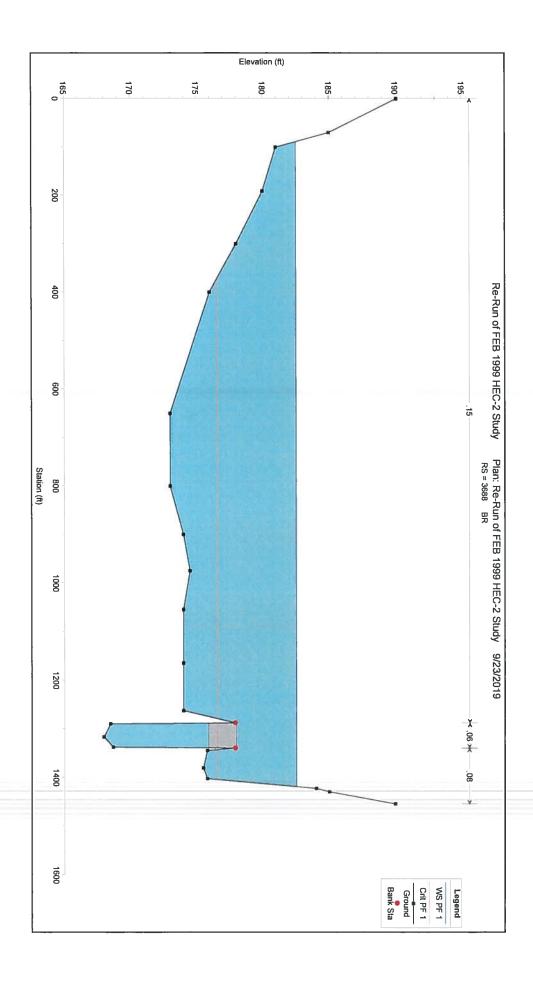
The state of the same of the s

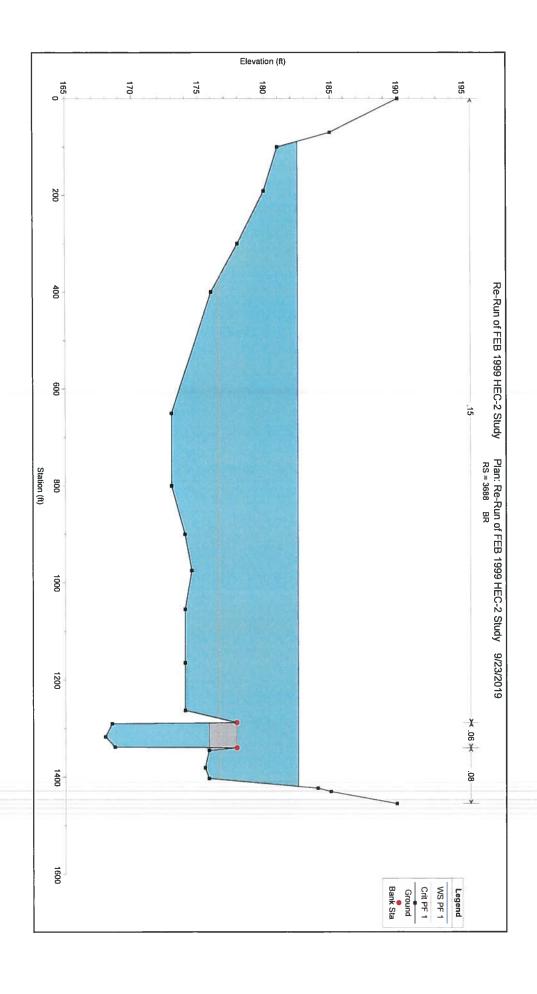
AYE -- HALLETT

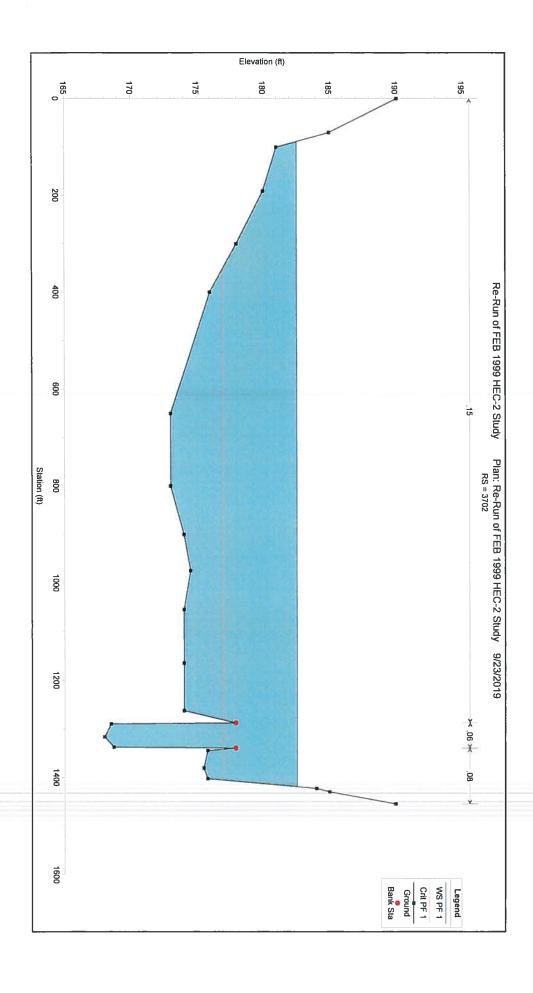
FEMA DATA

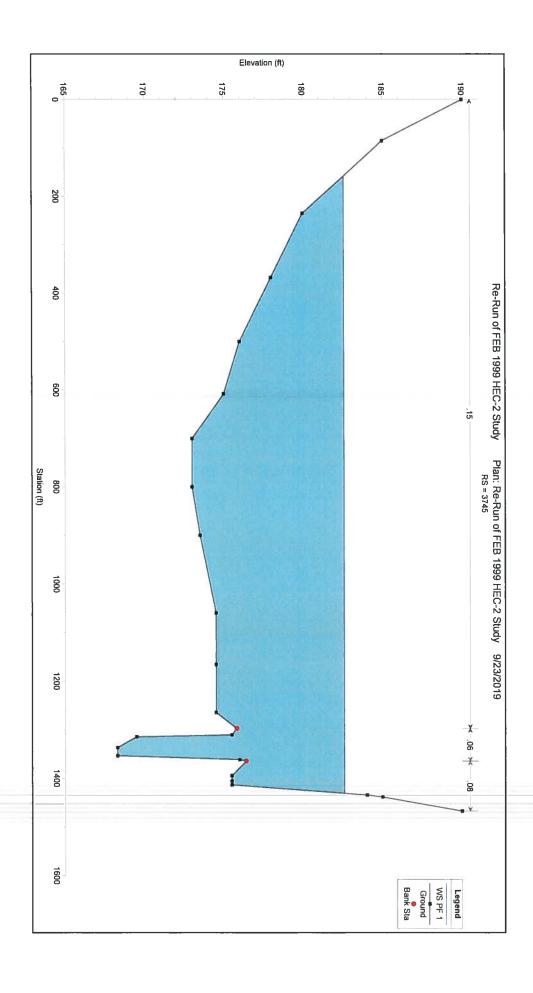

FEM A

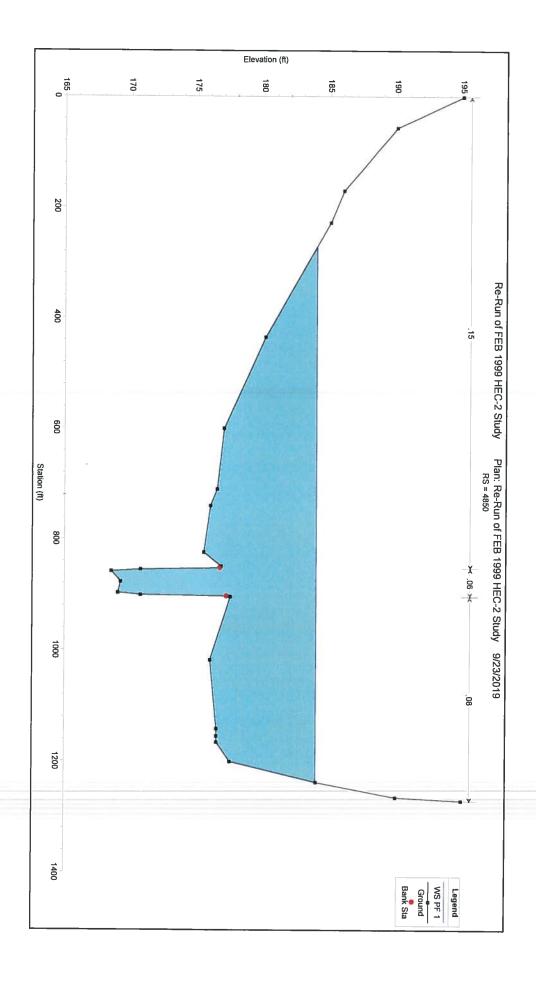

TABLE 1 - SUMMARY OF DISCHARGES

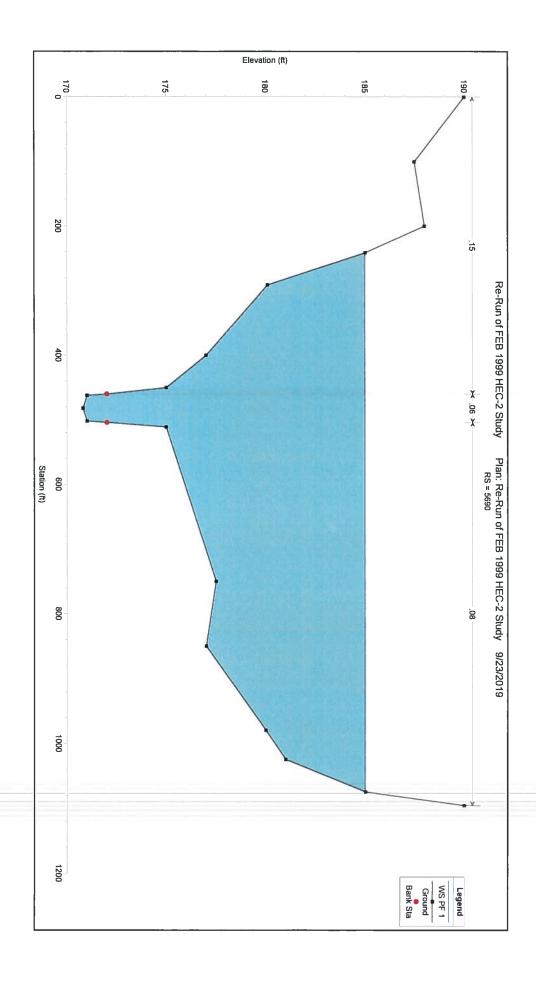

	DRAINAGE AREA		PEAK DISC	CHARGES (cf	Te 1
FLOODING SOURCE AND LOCATION	(sq. miles)	10-YEAR	50-YEAR	100-YEAR	500-YEAR
ROCK CREEK					JOC ILAR
Downstream County Boundary Cross Section AO (near	59.0	6,780	11,690	13,970	24,000
Beach Drive) Cross Section BO (near	48.3	5,640	9,730	11,630	21,000
Randolph Road) Cross Section CA (near	36.7	3,620	6,220	7,430	17,000
Viers Mill Road)	33.3	3,070	5,350	6,420	15,500
Cross Section CY (near dam) Cross Section DA (near	12.4	230	250	255	3,900
Nedwood Road) Cross Section EF (near upstream limit of	8.1	1,600	3,900	5,300	9,200
study)	2.2	720	2,100	3,100	5,400
NORTH BRANCH ROCK CREEK Confluence with Rock Creek					
Cross Section A	12.0	190	265	270	3,700
Cross Section W	10.0	2,400	5,700	7,800	14,000
Cross Section W	3.9	820	2,300	3,300	5,800
cross section Ar	1.5	440	1,200	1,750	3,000
SENECA CREEK					
Upstream at confluence					
with Great Seneca Creek Upstream at confluence	39.0	4,550	9,500	13,000	(1)
with the Potomac River	128.2	7,500	16,500	22,000	(1)
BOOZE CREEK		"/			
Upstream at confluence of					
Bulls Run	1.08	550	1 115	3 455	_
Downstream at confluence	1.00	330	1,115	1,453	2,549
of Bulls Run	2.75	1,138	2,307	3,007	5,273
BUCK BRANCH					
Bells Mill Road	1.23	612	1,241	1,618	2,837
BULLS RUN					
Upstream at confluence					
with Booze Creek	1.67	782	1,584	2,065	3,622
¹ No 500-year discharge developed	•				

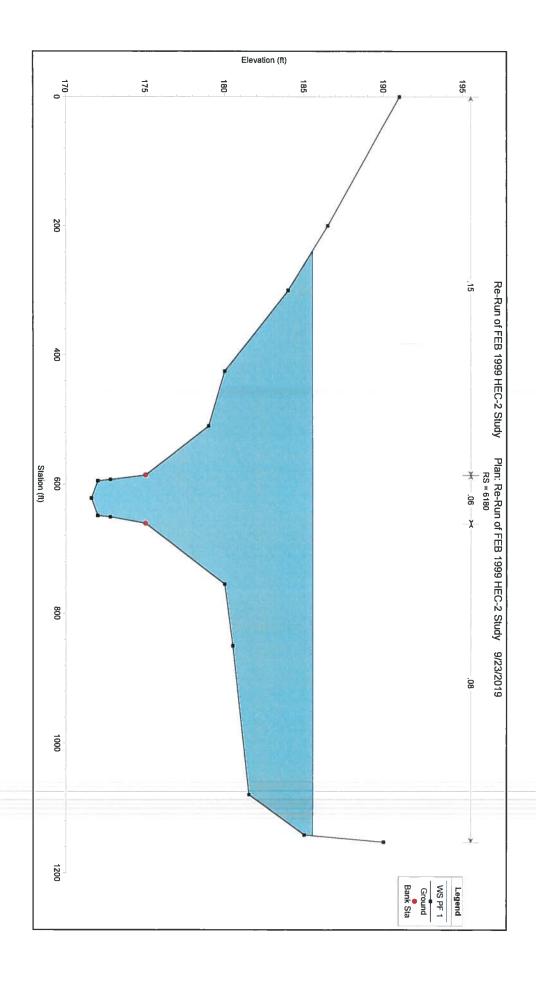

FLOODPLAIN ANALYSIS

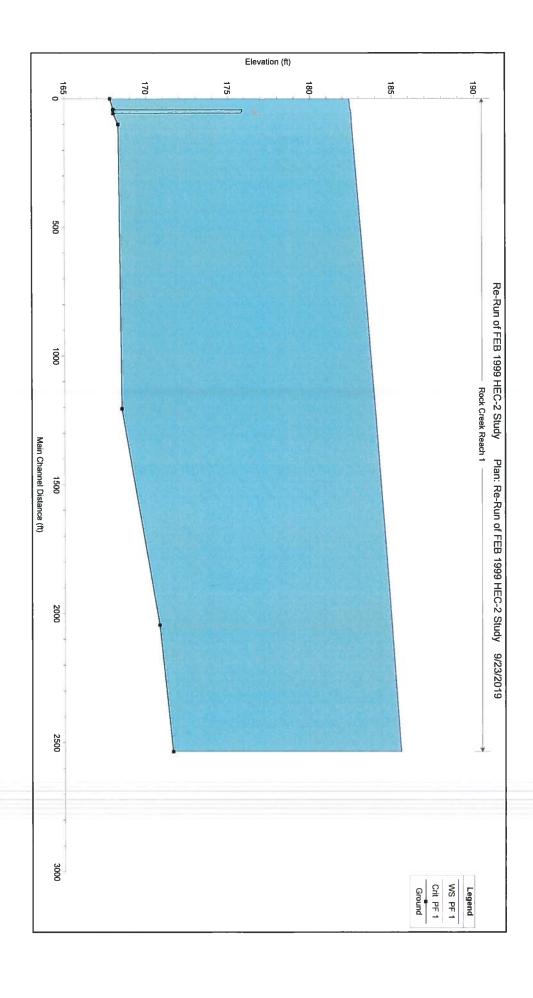

ROCK CREEK STUDY INPUT DATA RE-RUN THROUGH HEC-RAS

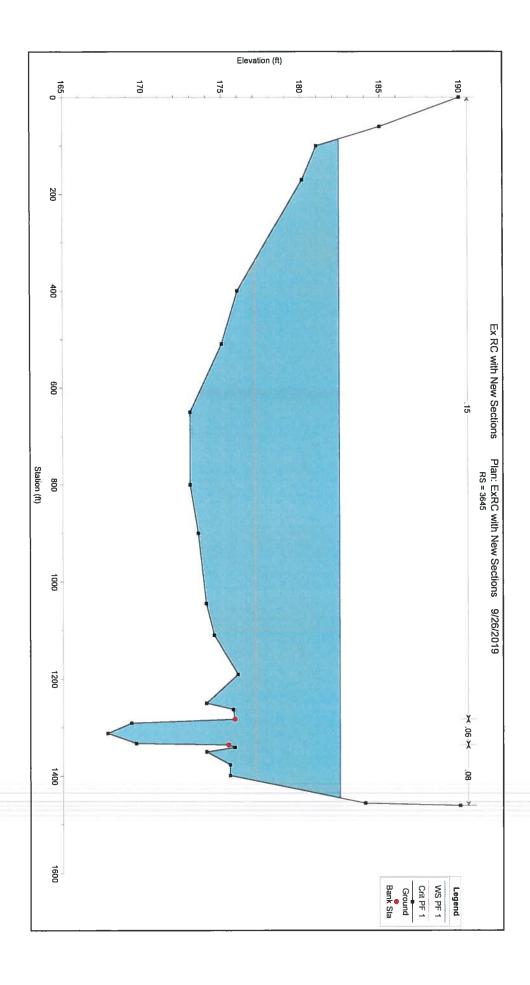


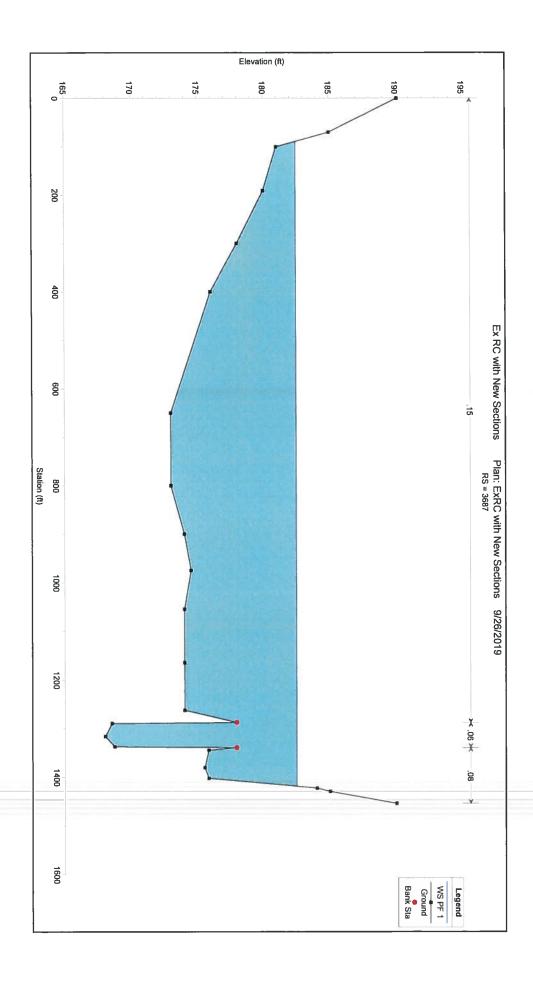


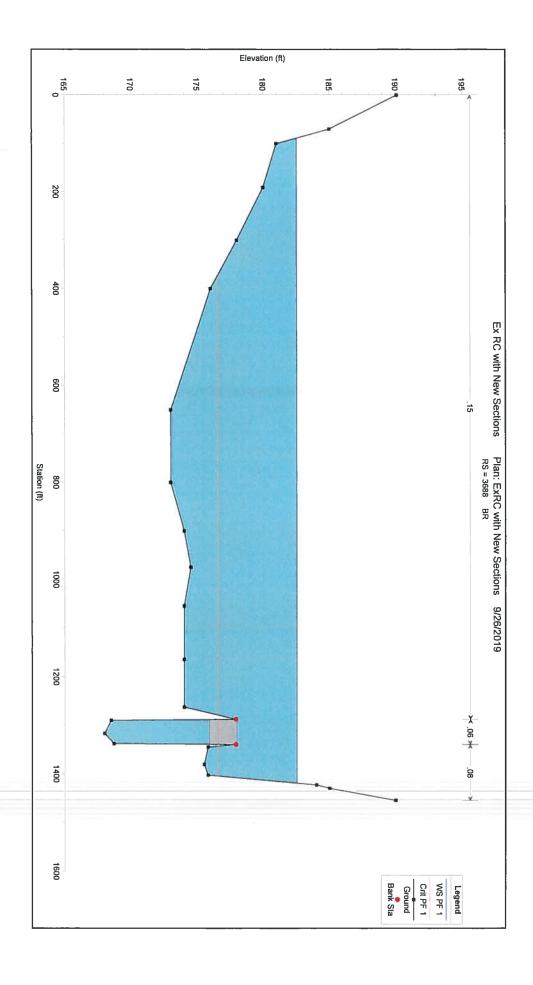


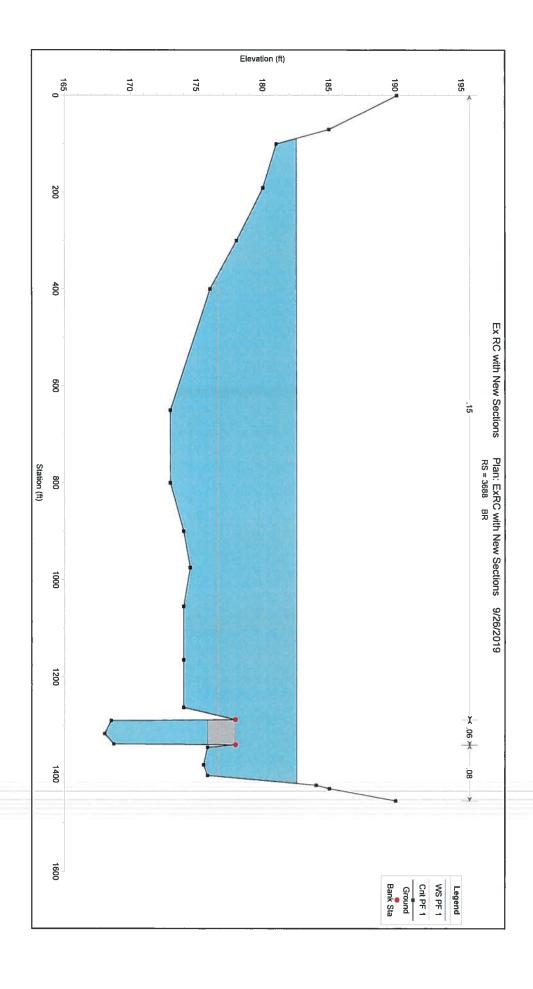


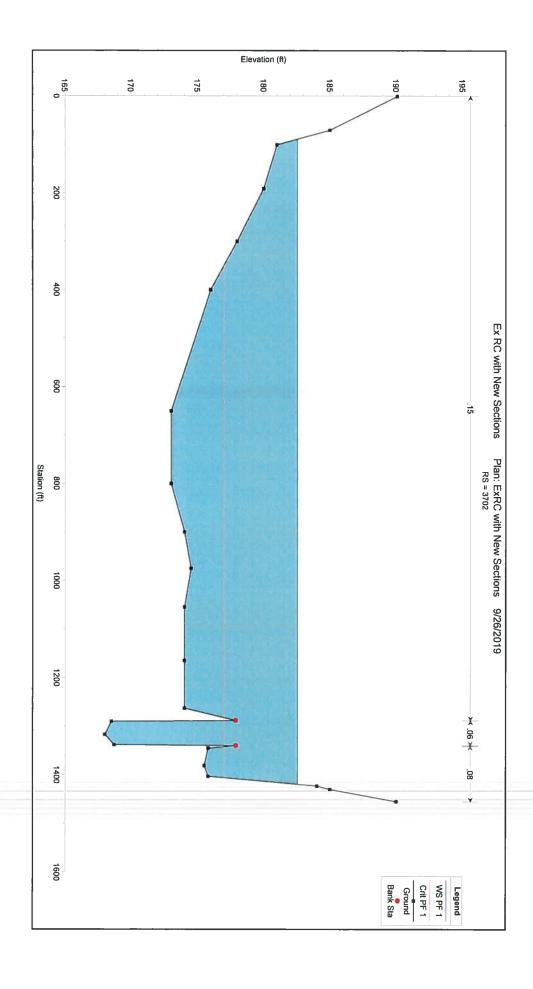


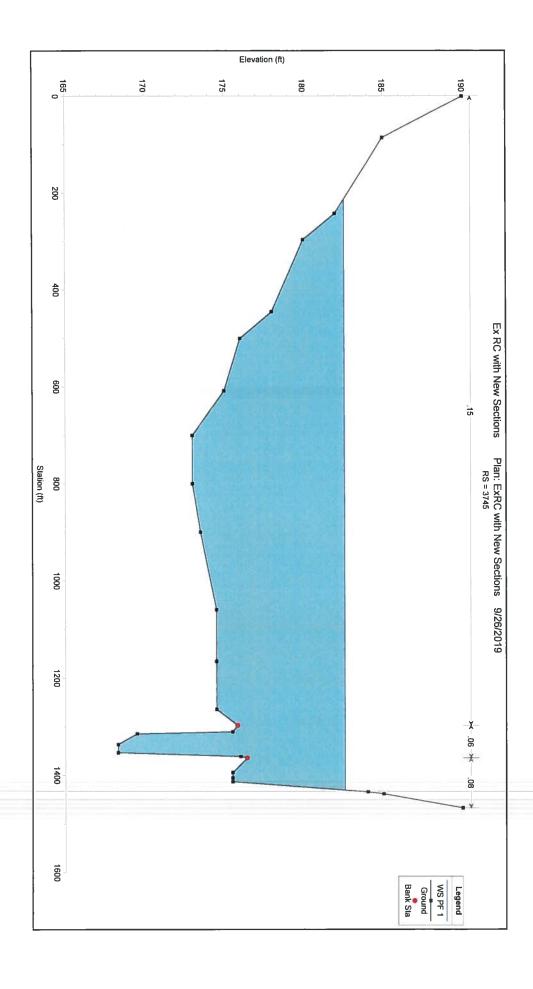


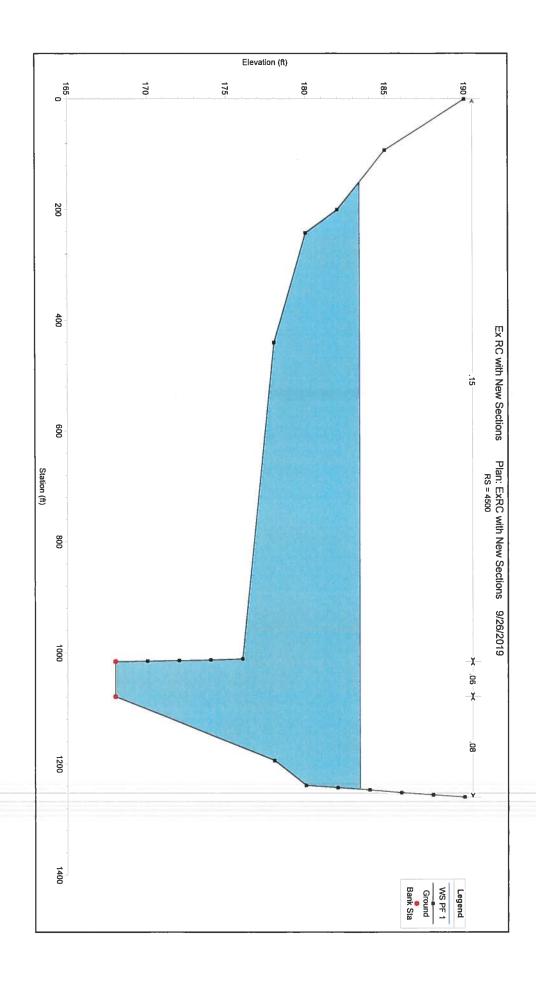

Reach 1 Reach 1 Reach 1 Reach 1 3687 3688 3702 3745 4850 6180 14000.00 14000.00 Bridge 14000.00 14000.00 14000.00 14000.00 168.00 168.30 168.50 170.80 171.60 168.00 182.53 182.57 183.99 184.98 185.54 182.47 Crit W.S. (ft) 177.12 176.98 E.G. Elev E.G. Slope (R/R) (R/R) (R/R) 0.001047 182.54 0.001042 182.60 182.65 184.17 185.12 185.83 0.001016 0.001176 0.001588 0.001129 0.001955 Vel Chni Flow Area
(ft/s) (sq ft) 3.85 4.09 5.22 4.81 6.08 3.88 4.12 9902.81 9194.78 6231.50 6088.92 5089.81 9822.44 9765.92 Top Width (ft) 1359.61 1330.34 1330.94 1273.66 967.45 833.62 904.80 Froude # Chl 0.18 0.21 0.24 0.23 0.29 0.20 Headloss 3 0.03 0.05 1.51 0.95 0.05 LOB Elev 175.80 177.90 177.90 175.80 176.70 172.00 175.00 ROB Elev (ft) 175.40 177.90 176.40 177.20 172.00 175.00 177.90

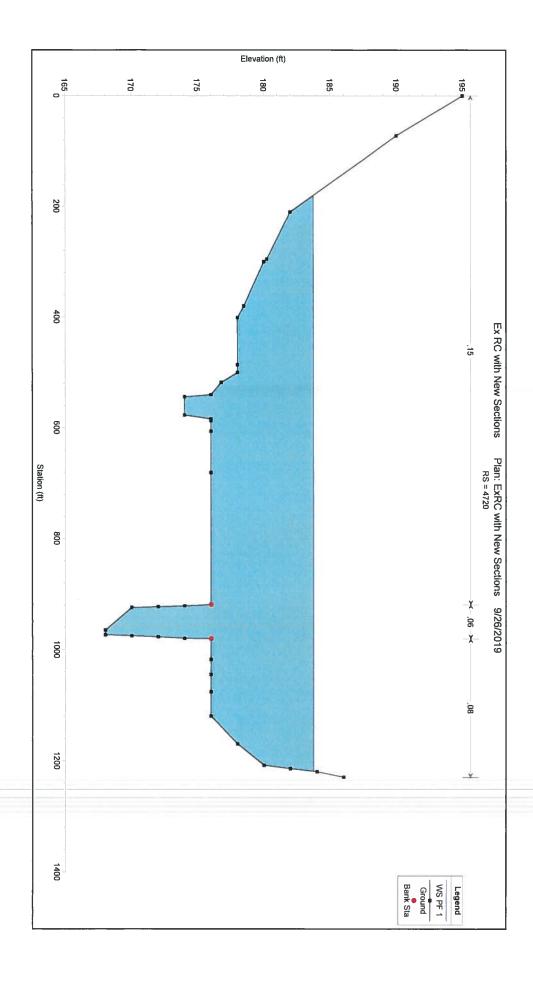


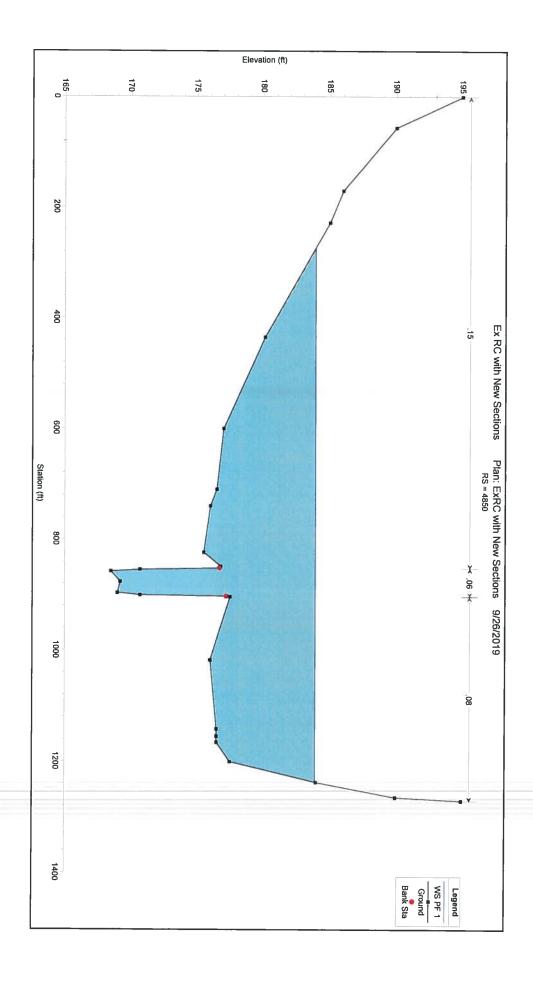

FLOODPLAIN ANALYSIS

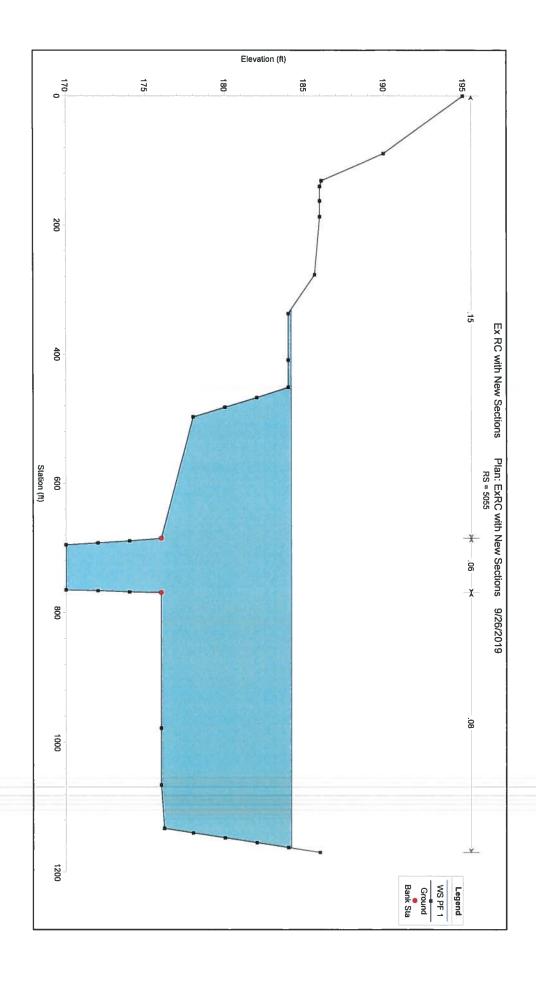

EXISTING CHANNEL CONDITIONS WITH NEW SECTIONS INSERTED

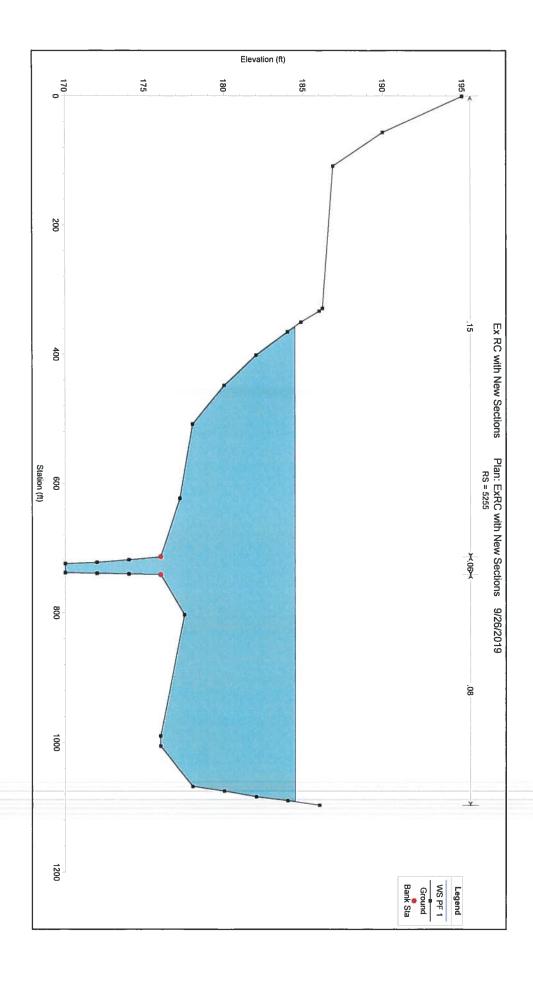


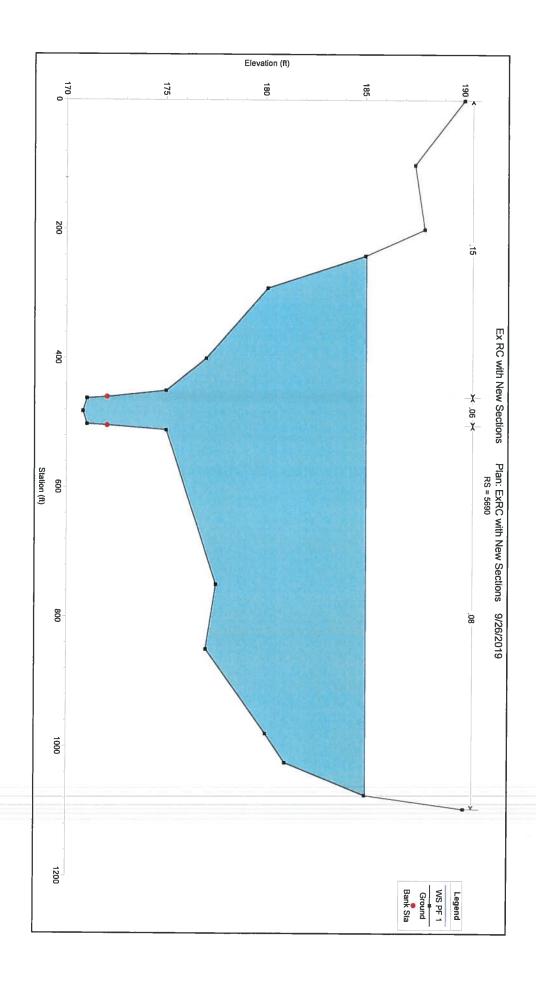


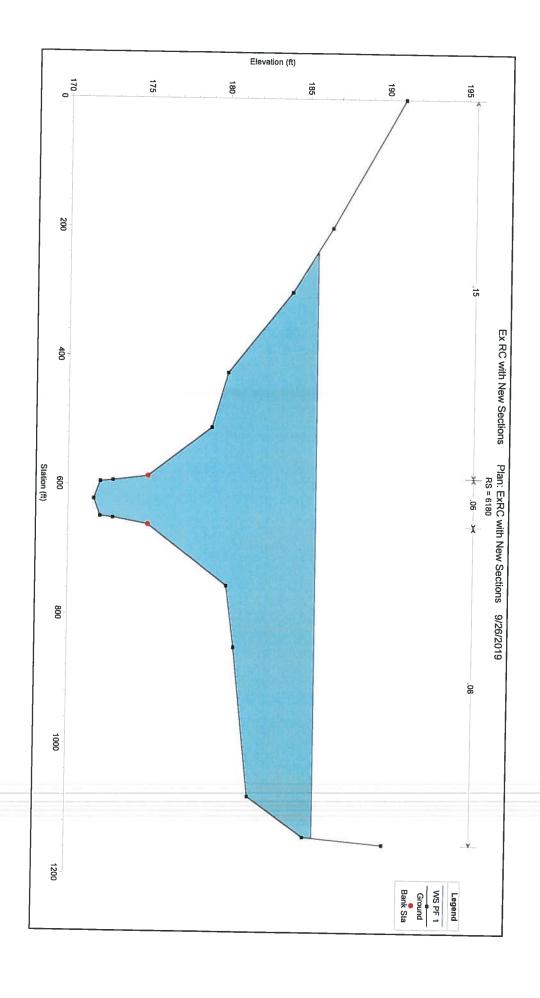


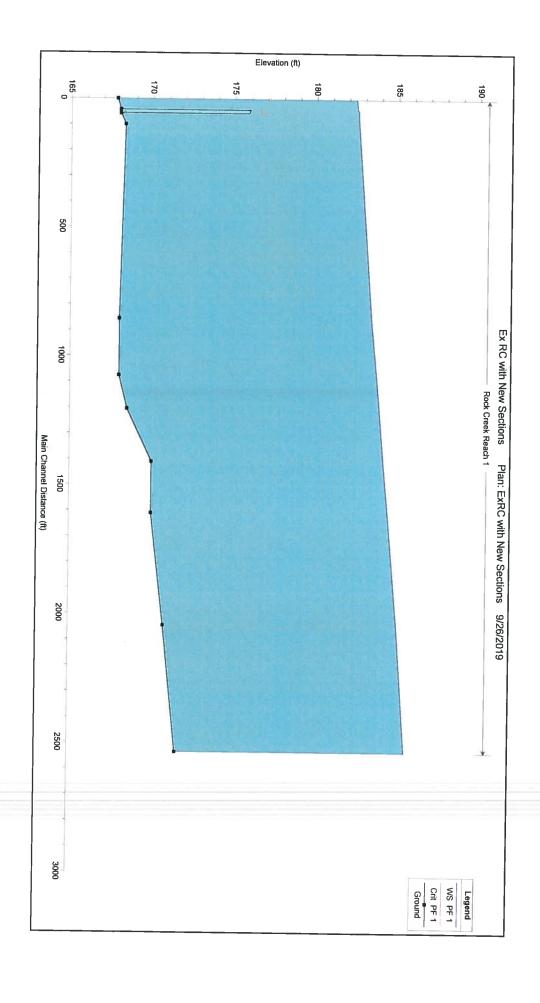


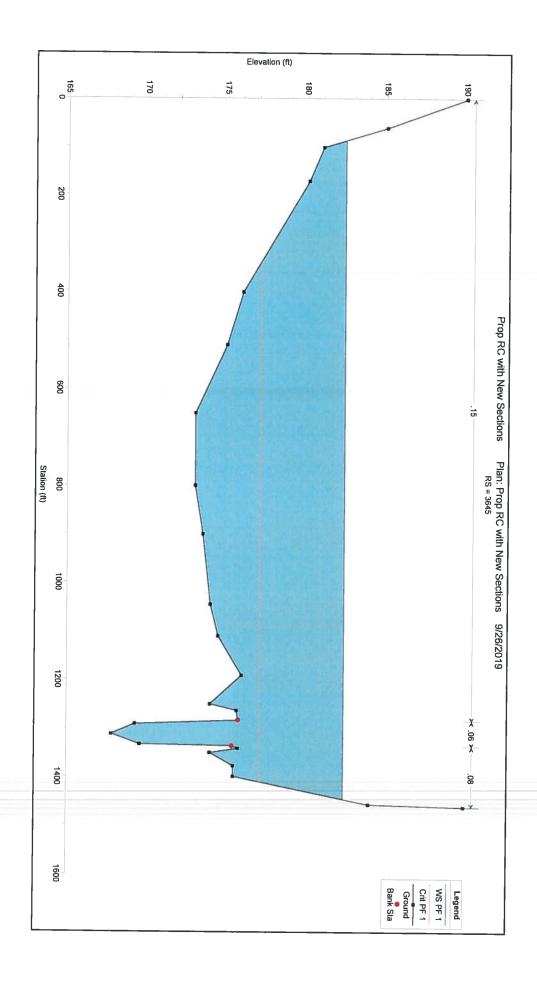


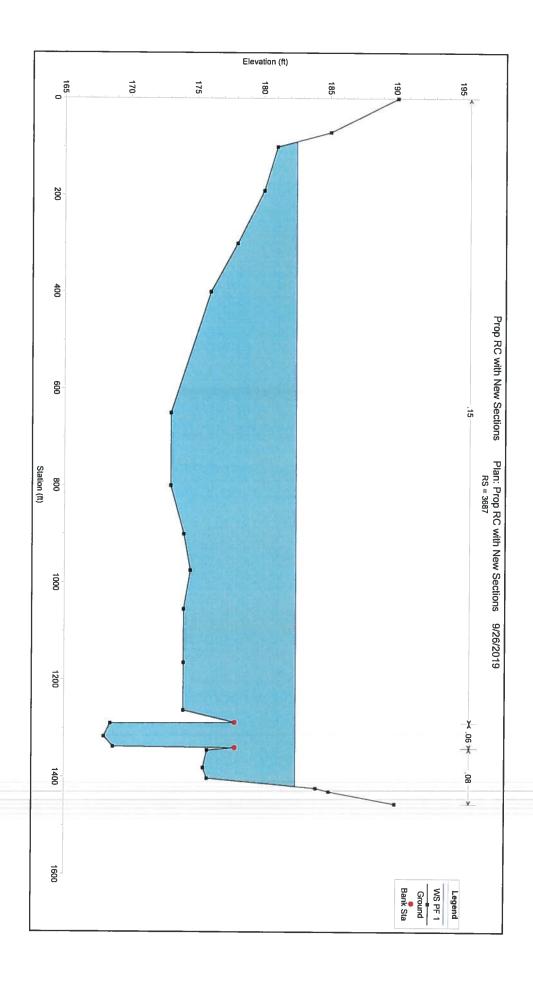


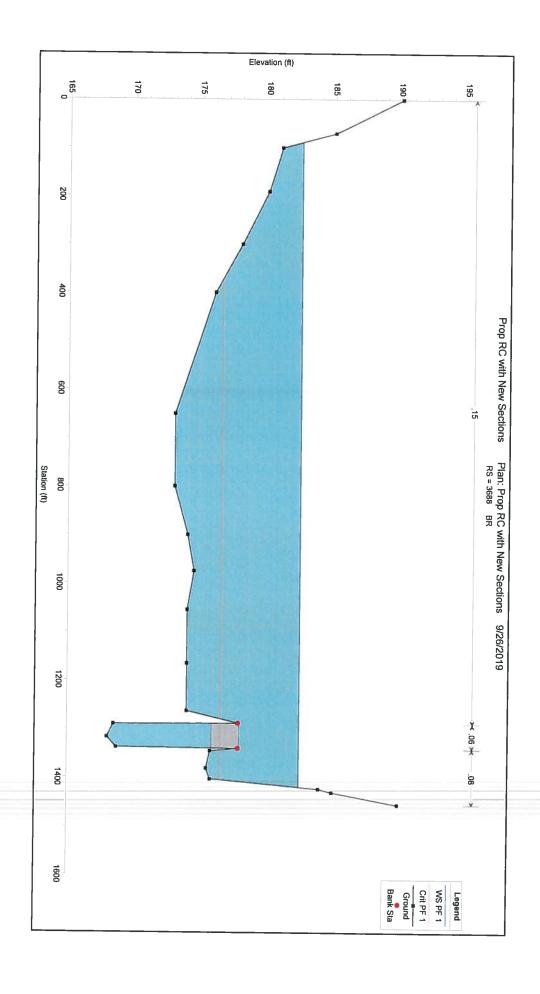


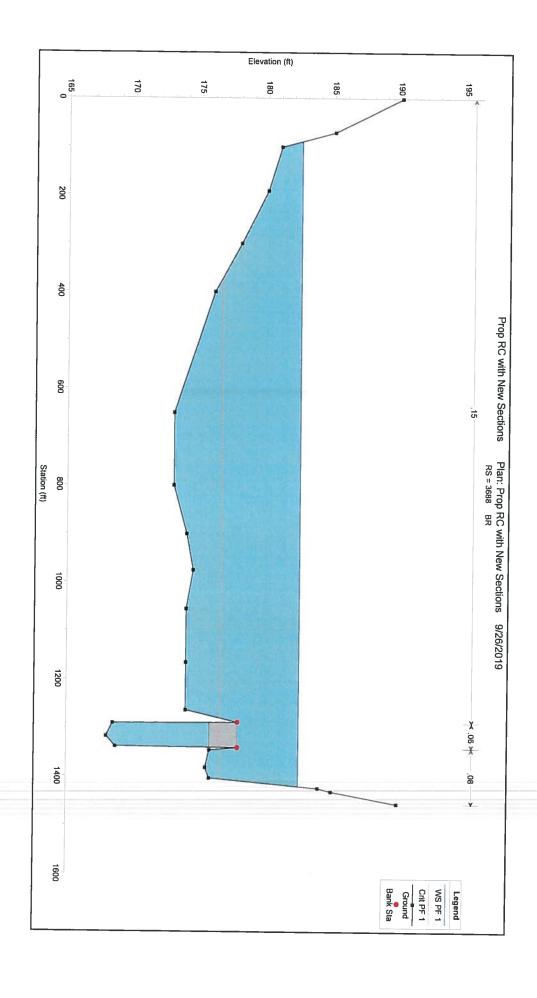


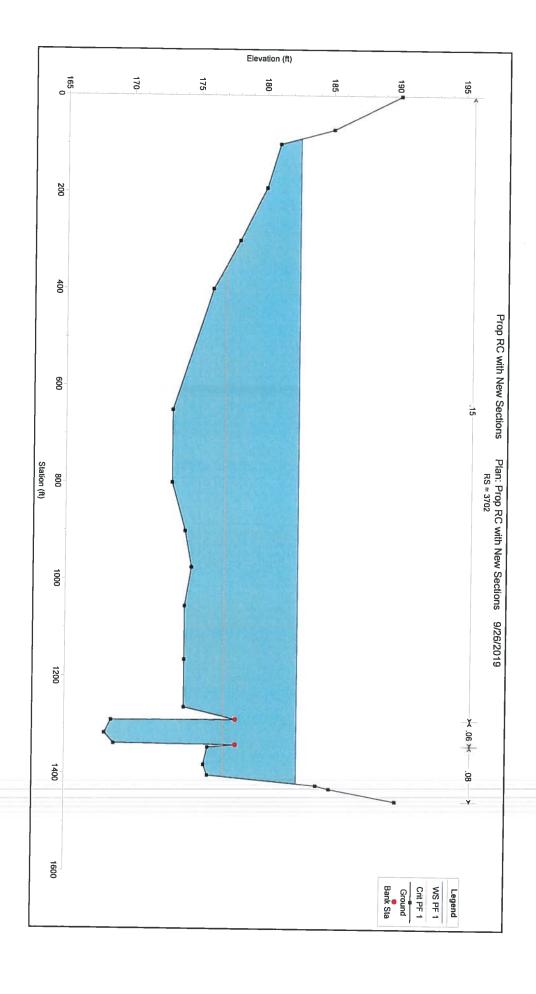


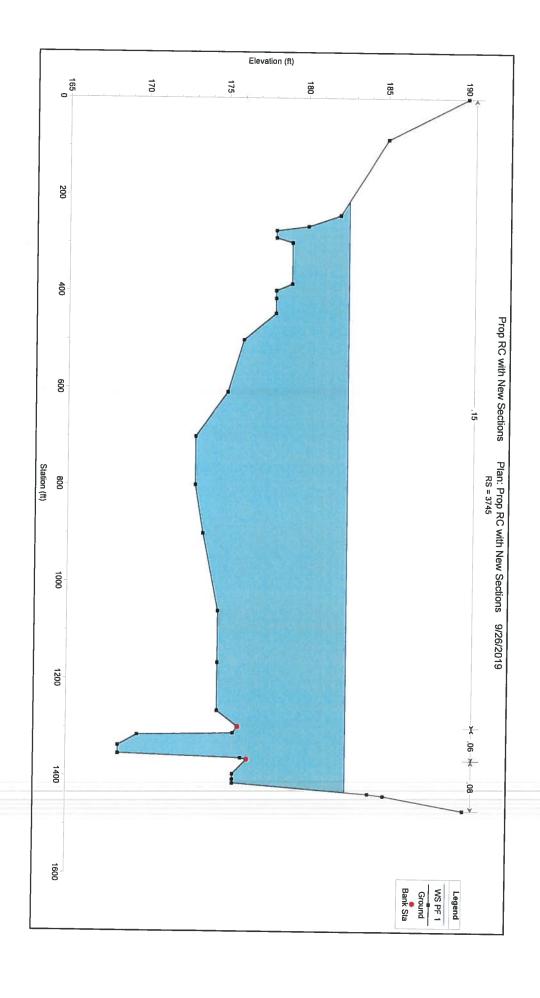


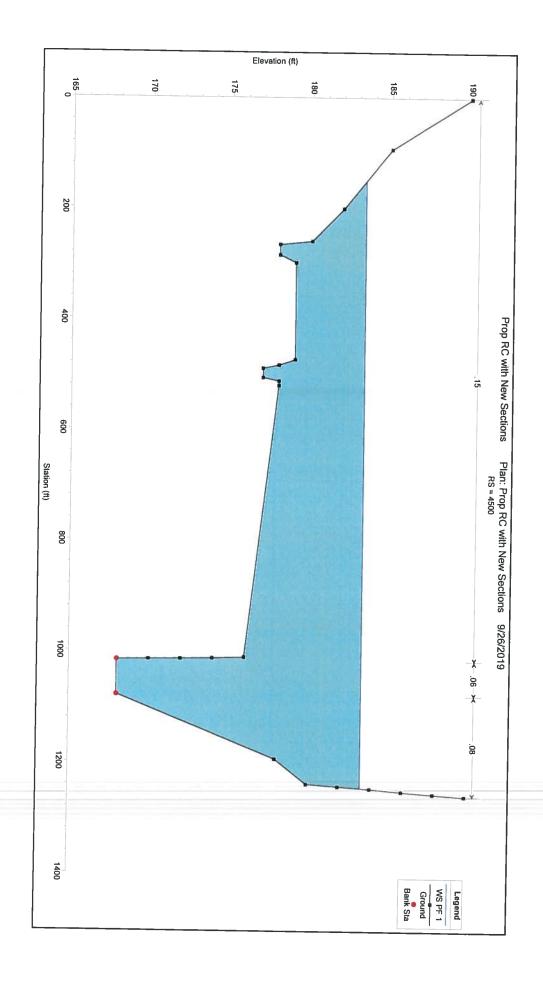

Reach	River Sta	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chril	Flow Area	Top Width	Froude # Chl	Headloss	LOB Elev	ROB Elev
		(cfs)	(n)	(ft)	(ft)	(A)	(fl/fl)	(fl/s)	(sq ft)	(#)		(ñ)	æ	a
Reach 1	3645	14000.00	167.80	182.42	177.12	182.49	0.001047	4.12	9765.92	1359.61	0.20		175.80	
Reach 1	3687	14000.00	168.00	182.47		182.54	0.001042	3.88	9822.44	1330.34	0.18	0.05	177.90	
Reach 1	3688	Bridge												
Reach 1	3702	14000.00	168.00	182.53	176.98	182.60	0.001016	3.85	9902.81	1330.94	0.18	0.03	177.90	177.90
Reach 1	3745	14000.00	168.30	182.57		182.66	0.001260	4.24	8813.29	1219.28	0.22	0.06	175.80	176.40
Reach 1	4500	14000.00	168.00	183.41		183.61	0.001217	5.35	7105.02	1096.67	0.24	0.96	168.00	168.00
Reach 1	4720	14000.00	168.00	183.75		183.91	0.001351	4.99	7101.34	1039.49	0.23	0.29	176.00	176.00
Reach 1	4850	14000.00	168.50	183.93		184.11	0.001630	5.27	6170.10	964.41	0.25	0.20	176.70	177.20
Reach 1	5055	14000.00	170.00	184.19		184.36	0.001097	4.51	5762.00	832.99	0.22	0.25	176.00	176.00
Reach 1	5255	14000.00	170.00	184.48		184.67	0.002315	5.79	5003.16	735.07	0.28	0.32	176.00	176.00
Reach 1	5690	14000.00	170.80	185.06		185.19	0.001096	4.75	6150.62	835.02	0.22	0.52	172.00	172.00
Reach 1	6180	14000.00	171.60	185.60		185.88	0.001903	6.01	5142.15	907.24	0.29	0.69	175.00	175.00

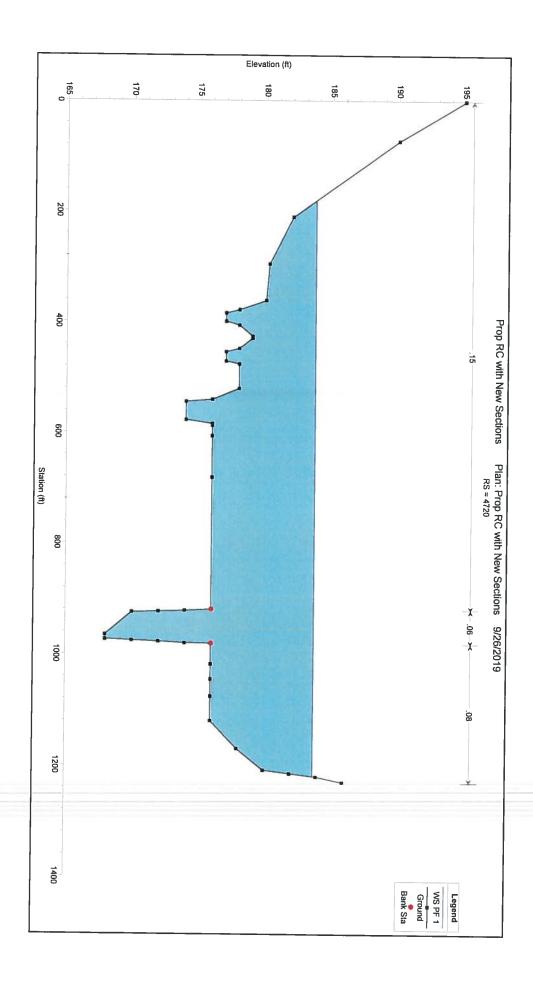


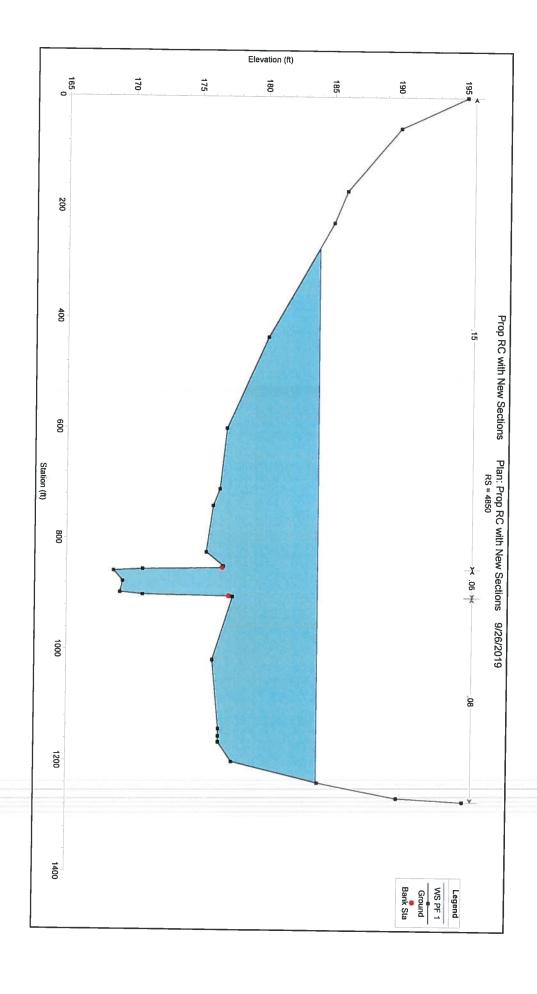

FLOODPLAIN ANALYSIS

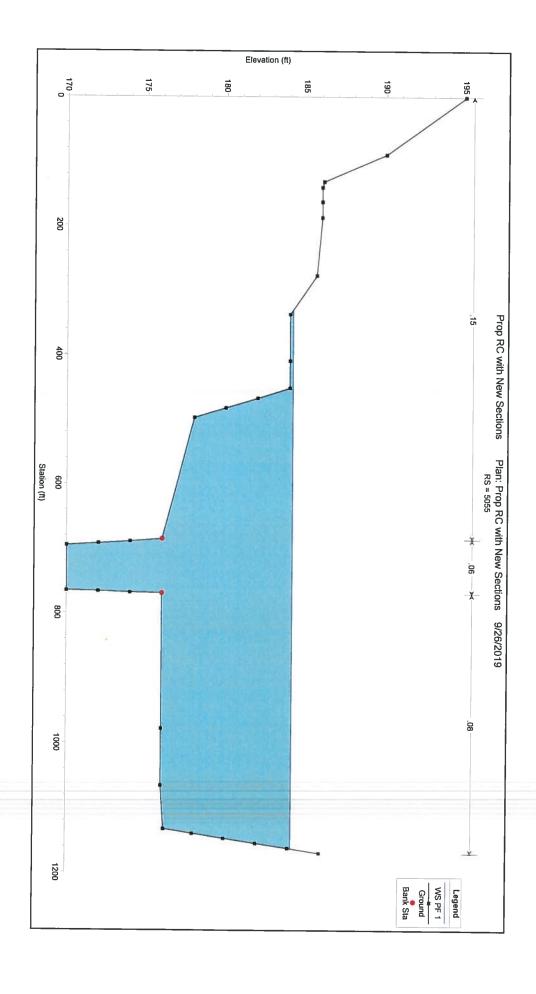

PROPOSED CHANNEL CONDITIONS WITH NEW SECTIONS INSERTED

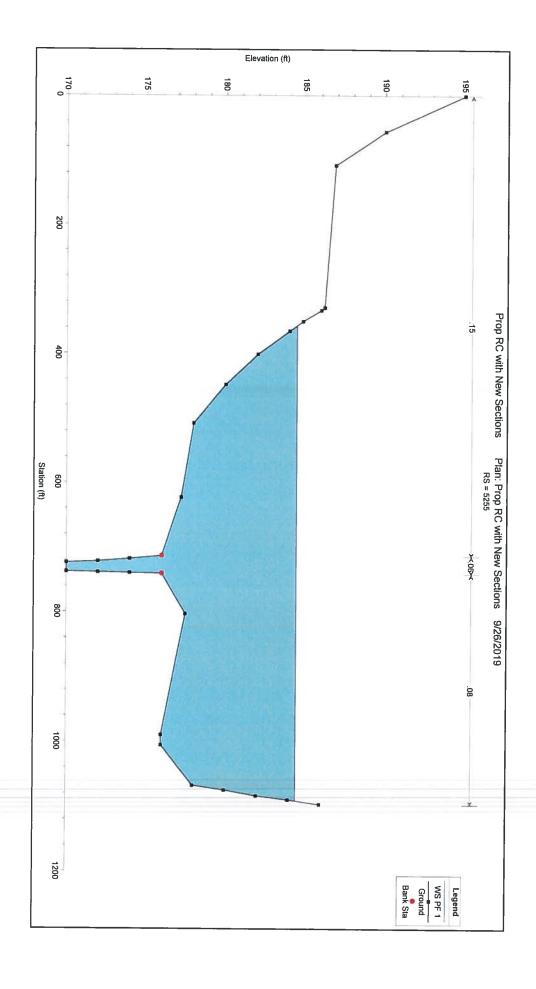


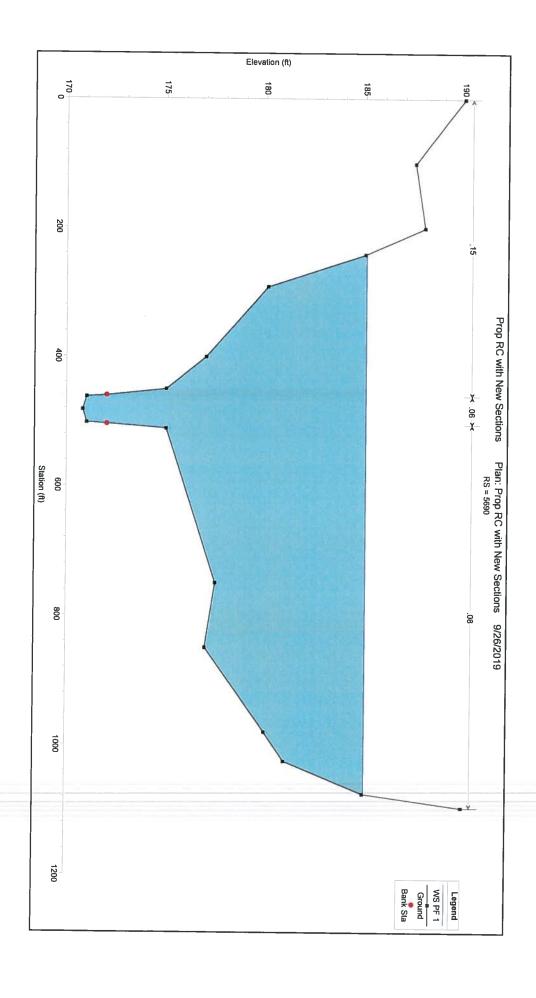


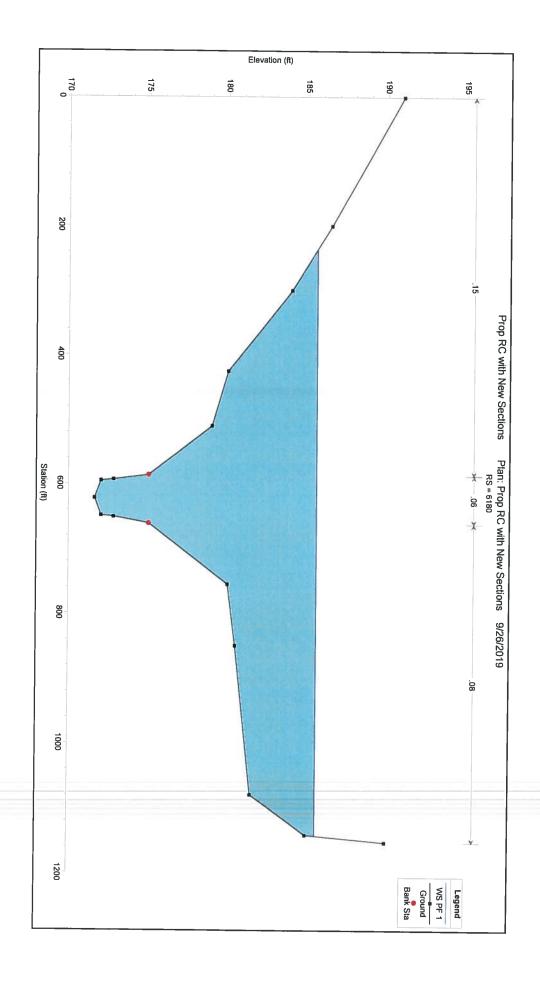


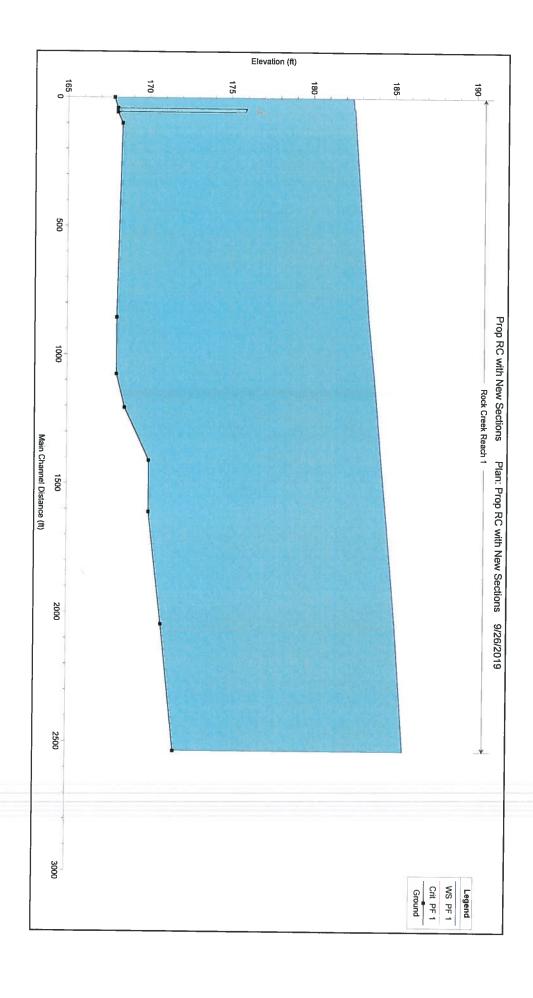












HEC-RAS Plan: PropRCwithNew River: Rock Creek Reach: Reach 1 Profile: PF 1

Reach	River Sta	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chni	Flow Area	Top Width	Froude # Chi	Headloss	LOB Elev	-
		(cfs)	(ft)	3	(2)	Â	(fl/fl)	(8/s)	(sq ft)	(1)		(4)	(4)	/6/
	2	140000	167 00	100	100			, ,	fe: h=h	100		144	(10)	f
	2	14000.00	107.80	182.42	1//.12	182.49	0.001047	4.12	9765.92	1359.61	0.20		175.80	T
Reach 1 3687	87	14000.00	168.00	182.47		182.54	0 001042	288	0822 44	1220 24	2		100	1
	5	2				101.0	240100.0	2.00	***.770C	1330.34	81.0	0.05	177.90	
Keach Jobs	ä	Bridge												
Reach 1 3702	2	14000 00	168 00	122 52	176 00	400 00								1
			100.00	102.30	170.50	102.00	0.001010	3.85	9902.81	1330.94	0.18	0.03	177.90	
Keach 1 3/45	ő	14000.00	168.30	182.57		182.66	0.001209	4.15	8951.33	1219.37	0.21	202	175 90	T
Peach 1 Ason	3	1000	168 00	100							O.F.	0.00	17 4.00	ľ
	2	14000.00	100.00	103.40		183.61	0.001255	5.43	6990.47	1096.27	0.24	0.96	168.00	
-	20	14000.00	168.00	183.75		183.91	0.001369	5.02	7057.05	1039.54	0.23	0.30	176.00	
Reach 1 4850	5	14000 00	168 50	183 04		10444	2000	1	0 120 11					Ī
	n c	14000.00	170.00	103.94		184.11	0.001626	5.26	6175.55	964.68	0.24	0.20	176.70	
-	100	14000.00	170.00	184.19		184.36	0.001095	4.51	5766.19	833.19	0.21	0.25	176.00	
Reach 1 5255	G	14000.00	170.00	184.48		184.68	0.002311	5.78	5006.43	735.17	0.28	0.30	176.00	
Reach 1 Sson	5	1400	170 80	105.00							0.00	0.01	110.00	Г
	3 8	14000.00	170.00	90.081		185.19	0.001094	4.75	6153.51	835.09	0.22	0.51	172.00	
Voger 1 0100	30	14000.00	1/1.60	185.60		185.88	0.001901	6.01	5144.62	907.35	0.29	0.69	175.00	

STATE OF MARYLAND

DEPARTMENT OF THE ENVIRONMENT WATER AND SCIENCE ADMINISTRATION AUTHORIZATION TO PROCEED

AUTHORIZATION NUMBER:

202060059/20-NT-3009

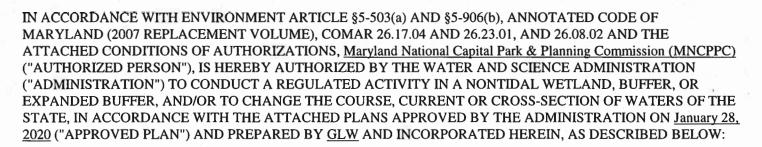
EFFECTIVE DATE:

January 28, 2020

EXPIRATION DATE:

January 28, 2025

AUTHORIZED PERSON:


Maryland National Capital Park & Planning Commission

(MNCPPC)

9500 Brunett Ave

Silver Spring, Maryland 20901

Attn:Erin McArdle

The project involves the construction of a nonhabitable covered pavilion style horse riding arena and minor grading within the 100-year nontidal floodplain of Rock Creek. The project will result in permanent impact to 1,000 square feet and temporary impact to 57,000 square feet of 100-year nontidal floodplain of Rock Creek. The project location is 8200 Meadowbrook Lane, Chevy Chase in Montgomery County.

MD Grid Coordinates 146805 \$\frac{1}{394761}\$

Denise M. Keehner Program Manager

Wetlands and Waterways Program

Attachments:

Conditions of Authorization & BMPs

Approved Plans

cc:

WSA Compliance Division w/ file

Katrina Weineg, Meadowbrook Foundation, Inc.

THE FOLLOWING CONDITIONS OF AUTHORIZATION APPLY TO ALL ACTIVITIES AUTHORIZED BY AUTHORIZATION NUMBER 202060059/20-NT-3009

Page 2 of 4

- 1. <u>Validity</u>: Authorization is valid only for use by Authorized Person. Authorization may be transferred only with prior written approval of the Administration. In the event of transfer, transferee agrees to comply with all terms and conditions of Authorization.
- 2. <u>Initiation of Work, Modifications and Extension of Term</u>: Authorized Person shall initiate authorized activities with two (2) years of the Effective Date of this Authorization or the Authorization shall expire. Authorized Person may submit written requests to the Administration for (a) extension of the period for initiation of work, (b) modification of Authorization, including the Approved Plan, or, (c) not later than 45 days prior to Expiration Date, an extension of the term. Requests for modification shall be in accordance with applicable regulations and shall state reasons for changes, and shall indicate the impacts on nontidal wetlands, streams, and the floodplain, as applicable. The Administration may grant a request at its sole discretion.
- 3. Responsibility and Compliance: Authorized Person is fully responsible for all work performed and activities authorized by this Authorization shall be performed in compliance with this Authorization and Approved Plan. Authorized Person agrees that a copy of the Authorization and Approved Plan shall be kept at the construction site and provided to its employees, agents and contractors. A person (including Authorized Person, its employees, agents or contractors) who violates or fails to comply with the terms and conditions of this Authorization, Approved Plan or an administrative order may be subject to penalties in accordance with §5-514 and §5-911, Department of the Environment Article, Annotated Code of Maryland (2007 Replacement Volume).
- 4. Failure to Comply: If Authorized Person, its employees, agents or contractors fail to comply with this Authorization or Approved Plan, the Administration may, in its discretion, issue an administrative order requiring Authorized Person, its employees, agents and contractors to cease and desist any activities which violate this Authorization, or the Administration may take any other enforcement action available to it by law, including filing civil or criminal charges.
- 5. Suspension or Revocation: Authorization may be suspended or revoked by the Administration, after notice of opportunity for a hearing, if Authorized Person: (a) submits false or inaccurate information in Permit application or subsequently required submittals; (b) deviates from the Approved Plan, specifications, terms and conditions; (c) violates, or is about to violate terms and conditions of this Authorization; (d) violates, or is about to violate, any regulation promulgated pursuant to Title 5, Department of the Environment Article, Annotated Code of Maryland as amended; (e) fails to allow authorized representatives of the Administration to enter the site of authorized activities at any reasonable time to conduct inspections and evaluations; (f) fails to comply with the requirements of an administrative action or order issued by the Administration; or (g) does not have vested rights under this Authorization and new information, changes in site conditions, or amended regulatory requirements necessitate revocation or suspension.
- 6. Other Approvals: Authorization does not authorize any injury to private property, any invasion of rights, or any infringement of federal, State or local laws or regulations, nor does it obviate the need to obtain required authorizations or approvals from other State, federal or local agencies as required by law.
- 7. <u>Site Access</u>: Authorized Person shall allow authorized representatives of the Administration access to the site of authorized activities during normal business hours to conduct inspections and evaluations necessary to assure compliance with this Authorization. Authorized Person shall provide necessary assistance to effectively and safely conduct such inspections and evaluations.
- 8. <u>Inspection Notification</u>: Authorized Person shall notify the Administration's Compliance Program at least five (5) days before starting authorized activities and five (5) days after completion. For Allegany, Garrett, and Washington counties, Authorized Person shall call 301-689-1480. For Carroll, Frederick, Howard, Montgomery, and Prince George's counties, Authorized Person shall call 301-665-2850. For Baltimore City, Anne Arundel, Baltimore, Harford, Calvert, Charles, and St. Mary's, Authorized Person shall call 410-537-3510. For Caroline, Cecil, Dorchester, Kent, Queen Anne's, Somerset, Talbot, Wicomico and Worcester, Authorized Person shall call 410-901-4020. If Authorization is for a project that is part of a mining site, please contact the Land and Materials Administration's Mining Program at 410-537-3557 at least five (5) days before starting authorized activities and five (5) days after completion.
- 9. <u>Sediment Control</u>: Authorized Person shall obtain approval from the <u>Montgomery</u> Soil Conservation District for a grading and sediment control plan specifying soil erosion control measures. The approved grading and sediment control plan shall be included in the Approved Plan, and shall be available at the construction site.

THE FOLLOWING CONDITIONS OF AUTHORIZATION APPLY TO ALL ACTIVITIES AUTHORIZED BY AUTHORIZATION NUMBER 202060059/20-NT-3009

Page 3 of 4

- 10. <u>Best Management Practices During Construction</u>: Authorized Person, its employees, agents and contractors shall conduct authorized activities in a manner consistent with the Best Management Practices specified by the Administration.
- 11. <u>Disposal of Excess</u>: Unless otherwise shown on the Approved Plan, all excess fill, spoil material, debris, and construction material shall be disposed of outside of nontidal wetlands, nontidal wetlands buffers, and the 100-year floodplain, and in a location and manner which does not adversely impact surface or subsurface water flow into or out of nontidal wetlands.
- 12. <u>Temporary Staging Areas</u>: Temporary construction trailers or structures, staging areas and stockpiles shall not be located within nontidal wetlands, nontidal wetlands buffers, or the 100-year floodplain unless specifically included on the Approved Plan.
- 13. <u>Temporary Stream Access Crossings</u>: Temporary stream access crossings shall not be constructed or utilized unless shown on the Approved Plan. If temporary stream access crossings are determined necessary prior to initiation of work or at any time during construction, Authorized Person, its employees, agents or contractors shall submit a written request to the Administration and secure the necessary permits or approvals for such crossings before installation of the crossings. Temporary stream access crossings shall be removed and the disturbance stabilized prior to completion of authorized activity or within one (1) year of installation.
- 14. <u>Discharge</u>: Runoff or accumulated water containing sediment or other suspended materials shall not be discharged into waters of the State unless treated by an approved sediment control device or structure.
- 15. <u>Instream Construction Prohibition</u>:
 - No instream construction is to occur under this Authorization;
 - To protect important aquatic species, motor driven construction equipment shall not be allowed within stream channels unless on authorized ford crossings. Activities within stream channels are prohibited as determined by the classification of the stream (COMAR 26.08.02.08): Rock Creek is a Use I waterway; in-stream work may not be conducted from March 1 through June 15 inclusive, of any year.
- 16. <u>Instream Blasting</u>: Authorized Person shall obtain prior written approval from the Administration before blasting or using explosives in the stream channel.
- 17. <u>Minimum Disturbance</u>: Any disturbance of stream banks, channel bottom, wetlands, and wetlands buffer authorized by this Authorization or Approved Plan shall be the minimum necessary to conduct permitted activities. All disturbed areas shall be stabilized vegetatively no later than seven (7) days after construction is completed or in accordance with the approved grading or sediment and erosion control plan.
- 18. <u>Restoration of Construction Site</u>: Authorized Person shall restore the construction site upon completion of authorized activities. Undercutting, meandering or degradation of the stream banks or channel bottom, any deposition of sediment or other materials, and any alteration of wetland vegetation, soils, or hydrology, resulting directly or indirectly from construction or authorized activities, shall be corrected by Authorized Person as directed by the Administration.

FEDERALLY MANDATED STATE AUTHORIZATIONS

In accordance with the requirements of Section 401 of the Federal Clean Water Act, Water Quality Certification is hereby issued for any discharges to Waters of the U.S. authorized herein, subject to the conditions of this Authorization. In addition, as applicable, this Authorization constitutes the State's concurrence with the Applicant's certification that the activities authorized herein are consistent with the Maryland Coastal Zone Management Program, as required by Section 307 of the Coastal Zone Management Act of 1972, as amended. Activities in the following counties are not subject to the Maryland Coastal Zone Management requirement: Allegany, Carroll, Frederick, Garrett, Howard, Montgomery, and Washington.

U.S. ARMY CORPS OF ENGINEERS AUTHORIZATION

The U.S. Army Corps of Engineers does not regulate the 100-year nontidal flooodplain. So, no corps authorization is required.

BEST MANAGEMENT PRACTICES FOR WORKING IN NONTIDAL WETLANDS, WETLAND BUFFERS, WATERWAYS, AND 100-YEAR FLOODPLAINS

- 1) No excess fill, construction material, or debris shall be stockpiled or stored in nontidal wetlands, nontidal wetland buffers, waterways, or the 100-year floodplain.
- 2) Place materials in a location and manner which does not adversely impact surface or subsurface water flow into or out of nontidal wetlands, nontidal wetland buffers, waterways, or the 100-year floodplain.
- 3) Do not use the excavated material as backfill if it contains waste metal products, unsightly debris, toxic material, or any other deleterious substance. If additional backfill is required, use clean material free of waste metal products, unsightly debris, toxic material, or any other deleterious substance.
- 4) Place heavy equipment on mats or suitably operate the equipment to prevent damage to nontidal wetlands, nontidal wetland buffers, waterways, or the 100-year floodplain.
- Repair and maintain any serviceable structure or fill so there is no permanent loss of nontidal wetlands, nontidal wetland buffers, or waterways, or permanent modification of the 100-year floodplain in excess of that lost under the originally authorized structure or fill.
- 6) Rectify any nontidal wetlands, wetland buffers, waterways, or 100-year floodplain temporarily impacted by any construction.
- All stabilization in the nontidal wetland and nontidal wetland buffer shall consist of the following species: Annual Ryegrass (Lolium multiflorum), Millet (Setaria italica), Barley (Hordeum sp.), Oats (Uniola sp.), and/or Rye (Secale cereale). These species will allow for the stabilization of the site while also allowing for the voluntary revegetation of natural wetland species. Other non-persistent vegetation may be acceptable, but must be approved by the Nontidal Wetlands and Waterways Division. Kentucky 31 fescue shall not be utilized in wetland or buffer areas. The area should be seeded and mulched to reduce erosion after construction activities have been completed.
- 8) After installation has been completed, make post-construction grades and elevations the same as the original grades and elevations in temporarily impacted areas.
- 9) To protect aquatic species, in-stream work is prohibited as determined by the classification of the stream:

Use I waters: In-stream work shall not be conducted during the period March 1 through June 15, inclusive, during any year.

Use III waters: In-stream work shall not be conducted during the period October 1 through April 30, inclusive, during any year.

Use IV waters: In-stream work shall not be conducted during the period March 1 through May 31, inclusive, during any year.

- 10) Stormwater runoff from impervious surfaces shall be controlled to prevent the washing of debris into the waterway.
- Culverts shall be constructed and any riprap placed so as not to obstruct the movement of aquatic species, unless the purpose of the activity is to impound water.