PSTA SITE STORMWATER MANAGEMENT CONCEPT PLAN REPORT #285681

Submitted for:

The Elms at PSTA. LLC 1355 Beverly Road, Suite 240 McLean, VA 22101

Prepared by:

Rodgers Consulting, Inc. 19847 Century Blvd., Suite 200 Germantown, MD 20874

June 2021

PROFESSIONAL CERTIFICATION

"I hereby certify that these documents were prepared or approved by me, and that I am a duly licensed professional engineer under the laws of the State of Maryland, License No. 50010, Expiration Date: 7/09/22."

Table of Contents

Executive Summary	3-4
Stormwater Management Narrative	5-8
Appendix A – Stormwater Management Computations	10-22
Appendix B – Culvert Extension Computations	23

Executive Summary

This report presents the concept storm water management plan for the PSTA Site project in Montgomery County, Maryland. The PSTA project site is bound by Great Seneca Highway (MD-119) to the east, Key West Avenue (MD-28) to the north, the Shady Grove Medical Village to the northwest, and the Shady Grove Life Sciences Center to the south. The project proposes redevelopment of the Montgomery County Public Safety Training Academy campus, the absorption of portions of adjacent properties for the implementation of the master plan road Medical Center Drive, and public improvements within offsite county and state public right-of-way's bordering the site. The new development will include mixed use of single-family dwellings, commercial multifamily buildings, public roads, private alleys, and civic green areas. Offsite improvements in the county and state right-of-ways include intersection entrances of the master plan road Medical Center Drive as well as a new separated bikeway and sidepath running parallel to each roadway respectively. The PSTA project site consolidates five existing pieces of land into one overall site for stormwater management analysis (hereby referred to as "the Site") in the proposed condition. Three of these pieces of land make up the site in the existing condition, totaling at 1,944,513 ft². The other two pieces of land are parts of adjacent properties that will be acquiesced by the county for the Medical Center Drive public right-of-way. The total of these five pieces of land is 1,976,095 ft², and this is the total that is considered to make up the Site for the purposes of computing the site's stormwater management target requirements. Additionally, improvements are proposed offsite in the county right-of-way for Great Seneca Highway and the state rightof-way for Key West Avenue, for which the limits of disturbance are 44,418 ft² and 29,476 ft² respectively. Please see sheet 2A for more on the land pieces, their legal descriptions, and square footage.

This stormwater management plan has been prepared in accordance with the MDE 2007 Stormwater Management Regulations and applicable Montgomery County, Maryland COMCOR codes. This plan and report introduce the proposed redevelopment and the intended implementation of ESD and structural practices to provide all quality and quantity control requirements for this project. The Site meets the definition of redevelopment as defined by Montgomery County Code Section 19.21, whereby this project exceeds or equals 5,000 square feet of land disturbance; and will be performed on a site where the existing land use is commercial, industrial, institutional, or multifamily residential and existing imperviousness is greater than 40 percent. In the existing condition, there is 812,850 ft² of impervious area within the 1,944,513 ft² existing site, or 41.80%. For redevelopment, the applicant may use alternative stormwater management measures to satisfy the requirements of the project if it is shown that impervious area reduction and environmental site design (ESD) have been implemented to the maximum extent practicable (MEP), but the site targets have still not been met. Alternative stormwater management measures include on-site structural best management practices, off-site structural best management practices, or a combination of impervious area reduction, ESD implementation, and onsite or offsite structural best management practices within the limit of disturbance.

(Executive summary continues on next page)

The Site's environmental site design volume (ESD_V) is partially provided through the use of microbioretention facilities, bio-swales, and sheet flow to conservation area for a total 38,542 ft³ of treatment provided. The full Site ESD_V target of 156,670 ft³ will not be met with ESD alone, despite ESD to the MEP. Underground structural systems are proposed to treat the remaining required volume of 118,128 ft³ not able to be treated in ESD measures, in order to reach the overall Site's targets. The structural practices proposed include systems comprised of standard pre-cast flow splitters, corrugated metal pipe (CMP) detention units, and "jellyfish" filter cartridge treatment devices or approved equivalent. Through the combination of ESD facility and structural facility treatment, all stormwater management requirements have been met for the Site. A total of 160,418 ft³ of treatment has been provided.

Offsite public right-of-way improvements have been partitioned from the Site and will receive their own stormwater management analysis. Improvements and the associated stormwater treatment for the offsite state right-of-way will be coordinated with Maryland State Highway and are not a part of this stormwater management plan. Improvements for the offsite county right-of-way will require 3,078 ft³ of ESD_V treatment. At the time of concept design, Rodgers does not believe ESD solutions will be practicable within the limits of offsite county right-of-way. Per correspondence between Rodgers and DPS on 06/18/2021, Rodgers agrees to continue to explore permeable pavement as the primary treatment solution for the offsite county improvements with geotechnical engineering input at the Site Development Stormwater Management stage. If permeable pavement and other ESD options are determined impracticable, Rodgers will provide treatment within the limits of the Site as necessary to meet the 159,748 ft³ combined total of the Site and the offsite county right-of-way ESD_V targets. The concept currently proposes 160,418 ft³ of treatment total in the event that this outcome should occur, and so both outcomes remain viable to meet the overall stormwater management requirements.

ESD_{V} Required for the Site	156,670 ft ³
ESD _V Required for the offsite county right-of-way improvements	3,078 ft ³
Combined ESD _v Required	159,748 ft ³
ESD _v through ESD Provided	38,542 ft ³
Structural Treatment Required	118,128 ft ³
Structural Treatment Provided	121,876 ft ³
Surplus Treatment Volume	670 ft ³
Total ESD _v Provided	160,418 ft ³

Executive Summary Table

Stormwater Management Narrative

Property Information & Existing Conditions:

The PSTA project site consists of five existing pieces of land that will be combined into one. These pieces of land are a part of Parcel D (L. 16172 F. 270), a part of Parcel A (L. 16172 F. 223), P850 (L. 3862 F. 776), P925 (L. 3862 F. 772), and a part of Parcel V (Tax ID#03210078 FR43 NO66). The total of these five pieces of land is 1,976,095 ft² (please see sheet 2A for an existing condition base map). Work is also proposed in the offsite county right-of-way for Great Seneca Highway, for which the limits of development are 44,418 ft². Improvements are also proposed in the offsite state right-of-way for Key West Avenue, for which the limits of development are 29,476 ft². These offsite state right-of-way improvements and the associated stormwater treatment will be coordinated with Maryland State Highway Administration.

Soils for the Site and the offsite improvement areas are Hydrologic Soil Group 'C' & 'D', with the exception of 0.1% of the Site classified as B soils. See appendix A for USGS soil reports for the Site and the offsite county right-of-way improvements. Shallow bedrock exists in many areas throughout the site; please see the GTA Subsurface Exploration Plan located in the documents folder as well as sheet 2 for infiltration rates and bedrock depths.

Per the approved NRI/FSD (approval dated May 29, 2019), the Site is within the Upper Muddy Branch sub-watershed of the Lower Potomac Direct Watershed, Class I-P, and is not within a Special Protection Area (SPA). There is no FEMA mapped floodplain on or within 100' of the Site. There are perennial streams, intermittent streams, and areas of stream valley buffer present on the Site. Wetlands were observed on site during a field study performed by Rodgers Consulting in December 2018. There were no steep slopes found on site. The majority of the site drains to the northeast corner of the site towards an existing tributary. This tributary then leaves the limits of the Site via two 84" RCP pipes forming a culvert running underneath Key West Avenue. A small portion of the site drains to the west of the property towards a drainage swale that ends at the property line of the site and Shady Grove Medical village. A floodplain delineation study (FLDSTUDY-286994) has been applied for and is under review for the floodplain in the northeast corner of the site. The results of this study conclude the existing culvert is sufficient to handle the Site's outflow in both the existing and proposed condition.

The Site comprises of safety training facilities, expansive surface lots, existing stormwater management facilities/structures, and pad sites where buildings have been demolished in the existing condition. Rodgers Consulting has identified eight existing SWFAC stormwater management assets on the Site providing some level quality treatment and quantity control as required by stormwater regulations imposed in 2005. These facilities consist of dry ponds, bay savers, sand filters, flow splitters, and wet ponds. Additionally, there are five more existing SWFAC stormwater management assets on Parcel V to the south of the Site constructed at a similar time, providing some level of quality and quantity treatment for Parcel V drainage. The facilities include a stormceptor, flow splitters, and a sand filter. These parcel V facilities have been confirmed to be unimpacted by the Site's redevelopment and are outside of the Site's limits-of-disturbance.

All existing facilities previously mentioned eventually drain into the twin 84" RCP pipe culvert running underneath Key West Avenue. This water daylights on the other side of the road and flows via a small creek into SWFAC asset #11575, an extended detention wet pond.

Rodgers has reached out to DPS' Record Request under Information Request #437610 regarding existing facilities on the Site, but DPS was not able to locate any information regarding this project. Rodgers has also reached out to DEP and was provided an As Built for I.F.B. #5504510285 as the only result; it has been included in the supporting drawings folder for this submittal. Rodgers utilized this As Built in order to draft in existing storm drain information for a 42" line located on the Site (see sheet 2A). After review of this As Built and based on existing site grades, features, and storm drain information, Rodgers believes the Site's existing SWFAC facilities treat exclusively onsite water and are not regional facilities with one notable exception. SWFAC asset #23608, an existing wet pond, appears to provide some amount of quantity control for water picked up on parcel V south of the Site. Water draining in parcel V is partitioned via flow splitters to receive quality treatment via a stormceptor and a sand filter located within the limits of parcel V. However, some quantity overflow travels from one of these flow splitters to SWFAC asset #23608. Rodgers approximates the drainage area into this flow splitter to be at most 3 acres.

Rodgers is confident after reviewing the existing SWFAC facilities on the Site that the removal of said facilities will not impact the stormwater quality treatment requirements for Parcel V. Rodgers is also confident the removal the quantity control provided via SWFAC asset #23608 for parcel V will be acceptable for the following reasons:

- Rodgers has verified the capacity of the twin 84" RCP culvert running under Key West Avenue in proposed condition where SWFAC asset #23608 is no longer controlling for any quantity of water. The culvert has been analyzed via TR-55 (see appendix B) as well as via HEC-RAS for the floodplain delineation study (FLDSTUDY-286994).
- The stability of the tributary in the proposed condition will be preserved through non-erosive discharge of proposed Site storm drain, ensured by standard riprap protection as described in the 2011 Maryland Standards and Specifications for Soil Erosion and Sediment Control.
- 3. The results of the floodplain delineation study FLDSTUDY-286994, currently under review with MCDPS, substantiate a point of water surface elevation convergence prior to SWFAC asset #11575 in the stream flowing into it (please see FPDS-05 supporting drawings from the most recent submittal to DPS). Because the WSEL converges prior to, the extended detention wet pond is functionally not impacted.

Rodgers will continue to investigate through additional field survey recon and relevant existing plan inquiries. However, at this time it is Rodger's conclusion that the removal of the eight SWFAC assets as shown on sheet 2A is acceptable. Facilities will be removed during construction, and stormwater management will be transitioned from the existing facilities to the new proposed ESD / CMP systems during the sediment control phase of development.

Environmental Site Design:

In accordance with MDE 2007 Stormwater Management Regulations, ESD facilities will be required to treat an ESD_V based on the identification of a target P_E for the site multiplied across the project's limit of disturbance.

Site Constraints:

There are several significant site limitations that constrain or reduce the practicability of ESD practices. A majority of ESD options are eliminated by poor site soil infiltration and shallow bedrock. A geotechnical exploration conducted by Geo-Technology Associates found a majority of infiltration tests resulted in augur failure due to shallow bedrock (see sheet 2 of the plan for boring locations, infiltration rates, and bedrock depths). Infiltration tests where bedrock was not encountered yielded infiltration rates which failed to meet the necessary MDE thresholds for a majority of ESD options. Please see the geotechnical report produced by GTA included with this submittal for further details. The Project is further limited by feasible facility locations including: two existing WSSC water lines; two major 60" gas line and its associate buffer; significant green space lost to atypically large roadway sections for Medical Center Drive; Key West Avenue, and Blackwell Road dedicated to right-of-way where no ESD is permissible as mandated by Montgomery County; expansive pedestrian / bike paths; green space lost to the future CCT station per the county master plan.

The following is an evaluation of each ESD option for the Site.

Alternative Surfaces -

- a. Green Roofs Green roofs are not feasible for the residential development proposed due to the construction types of residential buildings. Multifamily buildings are wood frame and gable roofed and will not support green roof loads.
- b. Permeable Pavements Soil types found on site are entirely hydrologic soil group 'C' and 'D'; there is significant presence of rocky soils / shallow bedrock as well. Site soil conditions do not provide the infiltration necessary to make permeable pavements a practicable solution. The majority of boring calculated infiltration rates varied between 0 and 0.4 in/hr., with the exception of GTA-1, GTA-3, and GTA-5. However, GTA-1 boring encountered bedrock 3 feet from existing grade, GTA-3 is located where a building is being proposed, and GTA-5 is located where a civic green area is being proposed. Permeable Pavements are not a feasible solution for the overall site, however permeable pavements will be explored as the primary solution for the offsite county right-of-way with further geotechnical input at the site development stormwater management stage.
- c. Reinforced Turf Ideal areas for reinforced turf are not available to utilize on this site. There are no emergency access roads or occasionally used parking areas on this site. Some fire access surfaces are proposed with this layout, but they will need to bear loads too great for reinforced turf.

Nonstructural Practices -

- *a.* Disconnection of Rooftop Runoff Rooftop disconnection is not practicable due to site grading and green space available. There is an area of tree save towards the center of the Site's western edge. Existing grades exceed the 5% maximum allowable for rooftop disconnect however, so this practice cannot be counted.
- *b.* Disconnection of Non-Rooftop Runoff *Non-rooftop disconnection is not practicable due to site grading and lack of green space available for applicable areas.*
- *c.* Sheetflow to Conservation Areas Sheetflow to conservation area is proposed in the multifamily section of the site where it is most applicable.

Micro-Scale Practices -

- a. Rainwater Harvesting (Cisterns and Rain Barrels) Rainwater harvesting barrels are not practicable in the proposed conditions. Residential units will be high density and it will be more necessary to treat roofs with micro bioretention or structural practices in order to hit the site's overall target.
- *b.* Submerged Gravel Wetlands Submerged gravel wetlands are not practicable given the soil conditions and lack of applicable space found on site.
- *c*. Landscape Infiltration Soil types found on site are entirely hydrologic soil group 'C' and 'D'; there is significant presence of rocky soils as well. Site soil conditions do not provide the infiltration necessary to make landscape infiltration a practicable solution.
- *d*. Infiltration Berms Soil types found on site are entirely hydrologic soil group 'C' and 'D'; there is significant presence of rocky soils as well. Site soil conditions do not provide the infiltration necessary to make infiltration berms a practicable solution
- *e*. Dry Wells Rooftop runoff is more effectively treated through micro-bioretention facilities and structural facilities in order to meet the site's overall target, therefore dry wells are not a practicable solution for the site.
- f. Micro-Bioretention *Micro-bioretention facilities are proposed as much as possible where practicable on site.*
- *g.* Rain Gardens *Micro-bioretention is being proposed in all places where rain gardens would be appropriate, therefore rain gardens are not a practicable solution for the site.*
- h. Swales Soil types found on site are entirely hydrologic soil group 'C' and 'D'; there is significant presence of rocky soils as well. Site soil and grading conditions do not provide the infiltration necessary to make grass swales a practicable solution. Bio-swales are however located in the multifamily surface lot area.
- *i.* Enhanced Filters Enhanced filters to be considered for implementation where soil conditions beneath micro-bioretention are most feasible. Exact placement and depth to be determined at site development stage.

ESD to the MEP:

 ESD_V is provided through the use of micro-bioretention, bio-swale facilities, and sheetflow to conservation area to the maximum extent practicable. The Site was determined to have a target P_E of 1.80 in and treatment volume target (ESD_V) of 156,670 ft³, and offsite improvements in the county right-of-way were also determined to have a target P_E of 1.80 and a treatment volume target of 3,078 ft³ (see Appendix A for full stormwater management target computations for both the Site and the offsite county right-of-way improvements). This yields an overall target P_E of 1.80 in and treatment volume target (ESD_V) of 159,748 ft³. The ESD practices proposed on the Site will provide 0.434 in. of treatment, or 38,542 ft³ of ESD_V. Please see Appendix A for the ESD_V design summary table.

Structural Practice Requirements Summary:

Due to site constraints outlined in the previous sections, structural design practices will be required to provide volume to be treated beyond what is treated through ESD_V to the MEP. Structural practices include a system comprised of standard pre-cast flow splitters, corrugated metal pipe (CMP) detention units, and "jellyfish" filter cartridge treatment devices or another approved equivalent (please see sheet 9 of the plan for details).

A total of 156,670 ft³ of ESD_V is required in total for the Site, but only 38,542 ft³ of treatment is provided through ESD to the MEP. Thus, 118,128 ft³ of structural treatment volume will be required to meet the site's total requirement of 156,670 ft³.

Project Summary:

Structural practices have been placed throughout the Project to ensure 121,876 ft³ of runoff is stored and treated. Thus, an overall treatment volume of 160,418 ft³ is achieved and the Site's stormwater treatment target of 156,670 ft³ is met. The concept currently proposes 160,418 ft³ of treatment total in the event that no viable ESD solutions for offsite county right-of-way improvements.

Appendix A – Stormwater Management Computations:

					il Group	A				
%I	RCN*	P _E = 1"	1.2"	1.4"	1.6"	1.8"	2.0"	2.2"	2.4"	2.6"
0%	40									
5%	43									
10%	46									
15%	48	38								
20%	51	40	38	38						
25%	54	41	40	39						
30%	57	42	41	39	38					
35%	60	44	42	40	39					
40%	61	44	42	40	39					
45%	66	48	46	41	40					
50%	69	51	48	42	41	38				
55%	72	54	50	42	41	39				
60%	74	57	52	44	42	40	38			
65%	77	61	55	47	44	42	40			
70%	80	66	61	55	50	45	40			
75%	84	71	67	62	56	48	40	38		
80%	86	73	70	65	60	52	44	40		
85%	89	77	74	70	65	58	49	42	38	
90%	92	81	78	74	70	65	58	48	42	38
95%	95	85	82	78	75	70	65	57	50	39
100%	98	89	86	83	80	76	72	66	59	40

Table 5.3 Rainfall Targets/Runoff Curve Number Reductions used for ESD

			Hydro	ologic So	il Group	В				
%I	RCN*	P _E = 1"	1.2"	1.4"	1.6"	1.8"	2.0"	2.2"	2.4"	2.6"
0%	61									
5%	63									
10%	65									
15%	67	55								
20%	68	60	55	55						
25%	70	64	61	58						
30%	72	65	62	59	55					
35%	74	66	63	60	56					
40%	75	66	63	60	56					
45%	78	68	66	62	58					
50%	80	70	67	64	60					
55%	81	71	68	65	61	55				
60%	83	73	70	67	63	58				
65%	85	75	72	69	65	60	55			
70%	87	77	74	71	67	62	57			
75%	89	79	76	73	69	65	59			
80%	91	81	78	75	71	66	61			
85%	92	82	79	76	72	67	62	55		
90%	94	84	81	78	74	70	65	59	55	
95%	96	87	84	81	77	73	69	63	57	
100%	98	89	86	83	80	76	72	66	59	55

Cp_v Addressed (RCN = Woods in Good Condition)

RCN Applied to Cp_v Calculations

			Hydro	ologic So	il Group	С				
%I	RCN*	P _E = 1"	1.2"	1.4"	1.6"	1.8"	2.0"	2.2"	2.4"	2.6"
0%	74									
5%	75									
10%	76									
15%	78									
20%	79	70								
25%	80	72	70	70						
30%	81	73	72	71						
35%	82	74	73	72	70					
40%	84	77	75	73	71					
45%	85	78	76	74	71					
50%	86	78	76	74	71					
55%	86	78	76	74	71	70				
60%	88	80	78	76	73	71				
65%	90	82	80	77	75	72				
70%	91	82	80	78	75	72				
75%	92	83	81	79	75	72				
80%	93	84	82	79	76	72				
85%	94	85	82	79	76	72				
90%	95	86	83	80	77	73	70			
95%	97	88	85	82	79	75	71			
100%	98	89	86	83	80	76	72	70		

 Table 5.3 Runoff Curve Number Reductions used for Environmental Site Design (continued)

			Hydr	ologic So	il Group	D				
%	RCN*	P _E = 1"	1.2"	1.4"	1.6"	1.8"	2.0"	2.2"	2.4"	2.6"
0%	80									
5%	81									
10%	82									
15%	83									
20%	84	77								
25%	85	78								
30%	85	78	77	77						
35%	86	79	78	78						
40%	87	82	81	79	77					
45%	88	82	81	79	78					
50%	89	83	82	80	78					
55%	90	84	82	80	78					
60%	91	85	83	81	78					
65%	92	85	83	81	78					
70%	93	86	84	81	78					
75%	94	86	84	81	78					
80%	94	86	84	82	79					
85%	95	86	84	82	79					
90%	96	87	84	82	79	77				
95%	97	88	85	82	80	78				
100%	98	89	86	83	80	78	77			

Cp_v Addressed (RCN = Woods in Good Condition)

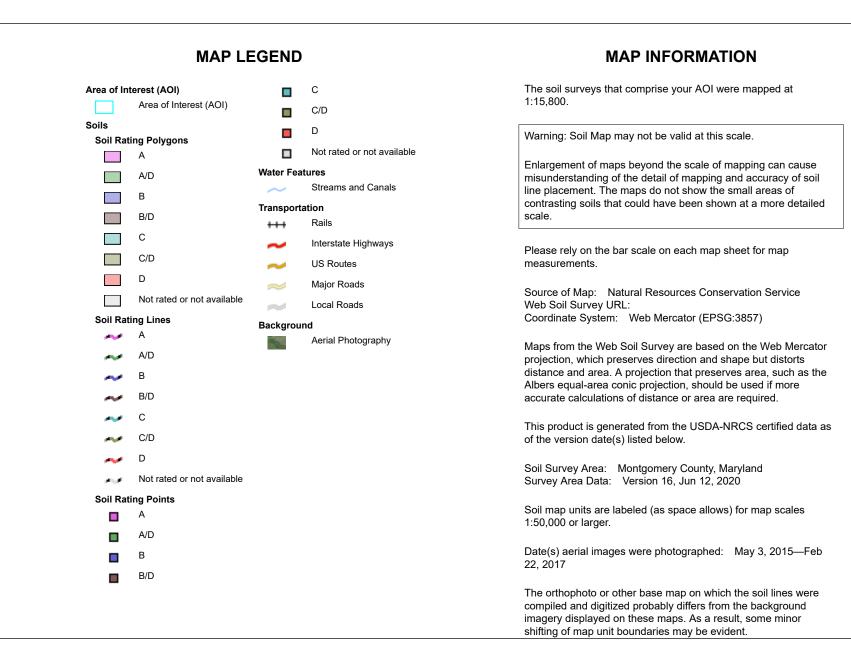
RCN Applied to Cp_v Calculations

The Site Stormwater Management Requirements Concept Computations:

PE Determination based on Site Area:

Total Site Area = $45.32 \text{ acres} (1,976,095 \text{ ft}^2)$ Proposed Impervious Area = $24.36 \text{ acres} (1,061,281 \text{ ft}^2)$ Impervious Percentage (Site) = 53.76% -> 54%

Site Soil Conditions:


HSG A = 0 acres HSG B = 0.041 acres | Site is 0.1% B | P_E = 1.8 in. HSG C = 32.86 acres | Site is 79.9% C | P_E = 1.8 in. HSG D = 8.23 acres | Site is 20.0% D | P_E = 1.8 in. Therefore **P_E** = 1.80 in

Target Runoff Curve Number Determination:

RCN HSG A = 40 RCN HSG B = 58 | Site is 0.1% B RCN HSG C = 70 | Site is 79.9% C RCN HSG D = 77 | Site is 20.0% D Therefore **RCN = 71**

ESD_V Determination Based on LOD Area:

LOD Area = 41.13 acres (1,791,538 ft²) Impervious Area within LOD = 24.34 acres (1,061,281 ft²) Impervious Percentage (LOD) = 59.239% RV = 0.05+0.009*(59.26%) = 0.583 Target ESD_V for full PE treatment = $\frac{(1.80)*(0.583)(1,791,538)}{12}$ = **156,670** *ft*³

Custom Soil Resource Report Map—Hydrologic Soil Group (PSTA Site)

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
2B	Glenelg silt loam, 3 to 8 percent slopes	В	0.0	0.1%
5A	Glenville silt loam, 0 to 3 percent slopes	С	1.3	3.3%
6A	Baile silt loam, 0 to 3 percent slopes	C/D	0.3	0.7%
35B	Chrome and Conowingo soils, 3 to 8 percent slopes	С	31.5	76.6%
37B	Travilah silt loam, 3 to 8 percent slopes	C/D	8.0	19.3%
Totals for Area of Inter	est		41.1	100.0%

Rating Options—Hydrologic Soil Group (PSTA Site)

Aggregation Method: Dominant Condition

Aggregation is the process by which a set of component attribute values is reduced to a single value that represents the map unit as a whole.

A map unit is typically composed of one or more "components". A component is either some type of soil or some nonsoil entity, e.g., rock outcrop. For the attribute being aggregated, the first step of the aggregation process is to derive one attribute value for each of a map unit's components. From this set of component attributes, the next step of the aggregation process derives a single value that represents the map unit as a whole. Once a single value for each map unit is derived, a thematic map for soil map units can be rendered. Aggregation must be done because, on any soil map, map units are delineated but components are not.

For each of a map unit's components, a corresponding percent composition is recorded. A percent composition of 60 indicates that the corresponding component typically makes up approximately 60% of the map unit. Percent composition is a critical factor in some, but not all, aggregation methods.

The aggregation method "Dominant Condition" first groups like attribute values for the components in a map unit. For each group, percent composition is set to the sum of the percent composition of all components participating in that group. These groups now represent "conditions" rather than components. The attribute value associated with the group with the highest cumulative percent composition is returned. If more than one group shares the highest cumulative percent composition, the corresponding "tie-break" rule determines which value should be returned. The "tie-break" rule indicates whether the lower or higher group value should be returned in the case of a percent composition tie. The result returned by this aggregation method represents the dominant condition throughout the map unit only when no tie has occurred.

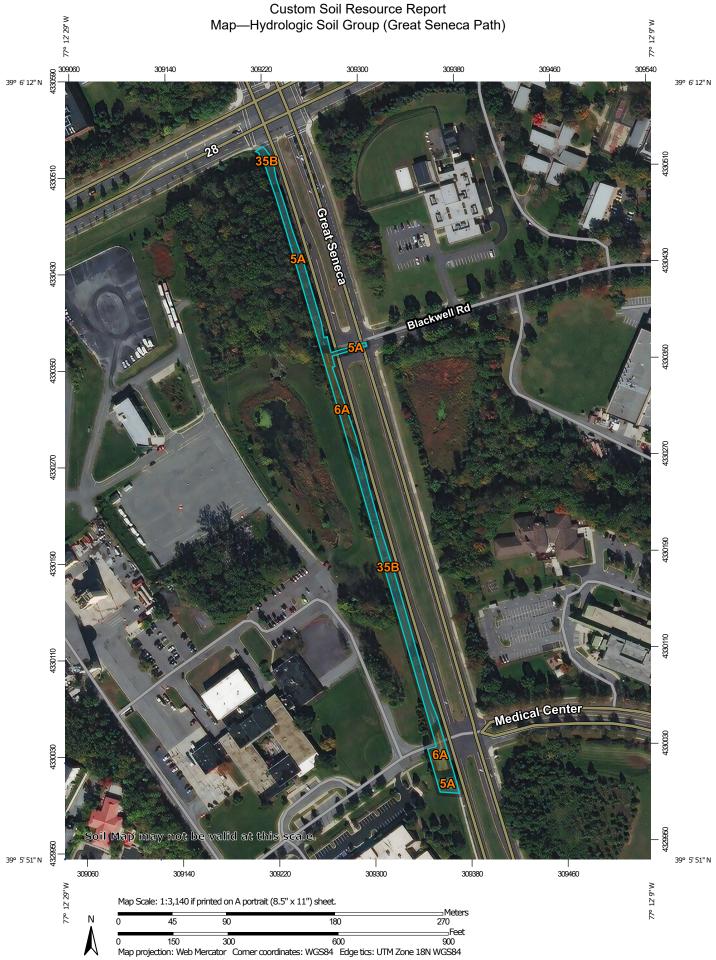
Component Percent Cutoff: None Specified

Offsite County Right-of-Way Stormwater Management Requirements Computations:

PE Determination based on Site Area:

Total Site Area = 1.02 acres (44,418 ft²) Proposed Impervious Area = 0.47 acres (20,314 ft²) Impervious Percentage (Site) = 45.73% -> 45%

Site Soil Conditions:


HSG A = 0 acres HSG B = 0 acres HSG C = 0.75 acres | Site is 73.5% C | P_E = 1.8 in. HSG D = 0.27 acres | Site is 26.5% D | P_E = 1.8 in. Therefore P_E = 1.80 in

Target Runoff Curve Number Determination:

RCN HSG A = 40 RCN HSG B = 58 RCN HSG C = 70 | Site is 73.5% C RCN HSG D = 77 | Site is 26.5% D Therefore **RCN = 72**

ESD_V Determination Based on LOD Area:

LOD Area = 1.02 acres (44,418 ft²) Impervious Area within LOD = 0.47 acres (20,314 ft²) Impervious Percentage (LOD) = 45.734% RV = 0.05+0.009*(45.734%) = 0.462 Target ESD_V for full PE treatment = $\frac{(1.80)*(0.462)(44,418)}{12}$ = 3,078 ft³

Table—Hydrologic Soil Group (Great Seneca Path)

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
5A	Glenville silt loam, 0 to 3 percent slopes	С	0.3	28.6%
6A	Baile silt loam, 0 to 3 percent slopes	C/D	0.3	26.5%
35B	Chrome and Conowingo soils, 3 to 8 percent slopes	С	0.5	44.9%
Totals for Area of Intere	st		1.0	100.0%

Rating Options—Hydrologic Soil Group (Great Seneca Path)

Aggregation Method: Dominant Condition

Aggregation is the process by which a set of component attribute values is reduced to a single value that represents the map unit as a whole.

A map unit is typically composed of one or more "components". A component is either some type of soil or some nonsoil entity, e.g., rock outcrop. For the attribute being aggregated, the first step of the aggregation process is to derive one attribute value for each of a map unit's components. From this set of component attributes, the next step of the aggregation process derives a single value that represents the map unit as a whole. Once a single value for each map unit is derived, a thematic map for soil map units can be rendered. Aggregation must be done because, on any soil map, map units are delineated but components are not.

For each of a map unit's components, a corresponding percent composition is recorded. A percent composition of 60 indicates that the corresponding component typically makes up approximately 60% of the map unit. Percent composition is a critical factor in some, but not all, aggregation methods.

The aggregation method "Dominant Condition" first groups like attribute values for the components in a map unit. For each group, percent composition is set to the sum of the percent composition of all components participating in that group. These groups now represent "conditions" rather than components. The attribute value associated with the group with the highest cumulative percent composition is returned. If more than one group shares the highest cumulative percent composition, the corresponding "tie-break" rule determines which value should be returned. The "tie-break" rule indicates whether the lower or higher group value should be returned in the case of a percent composition tie. The result returned by this aggregation method represents the dominant condition throughout the map unit only when no tie has occurred.

Component Percent Cutoff: None Specified

Components whose percent composition is below the cutoff value will not be considered. If no cutoff value is specified, all components in the database will be considered. The data for some contrasting soils of minor extent may not be in the database, and therefore are not considered.

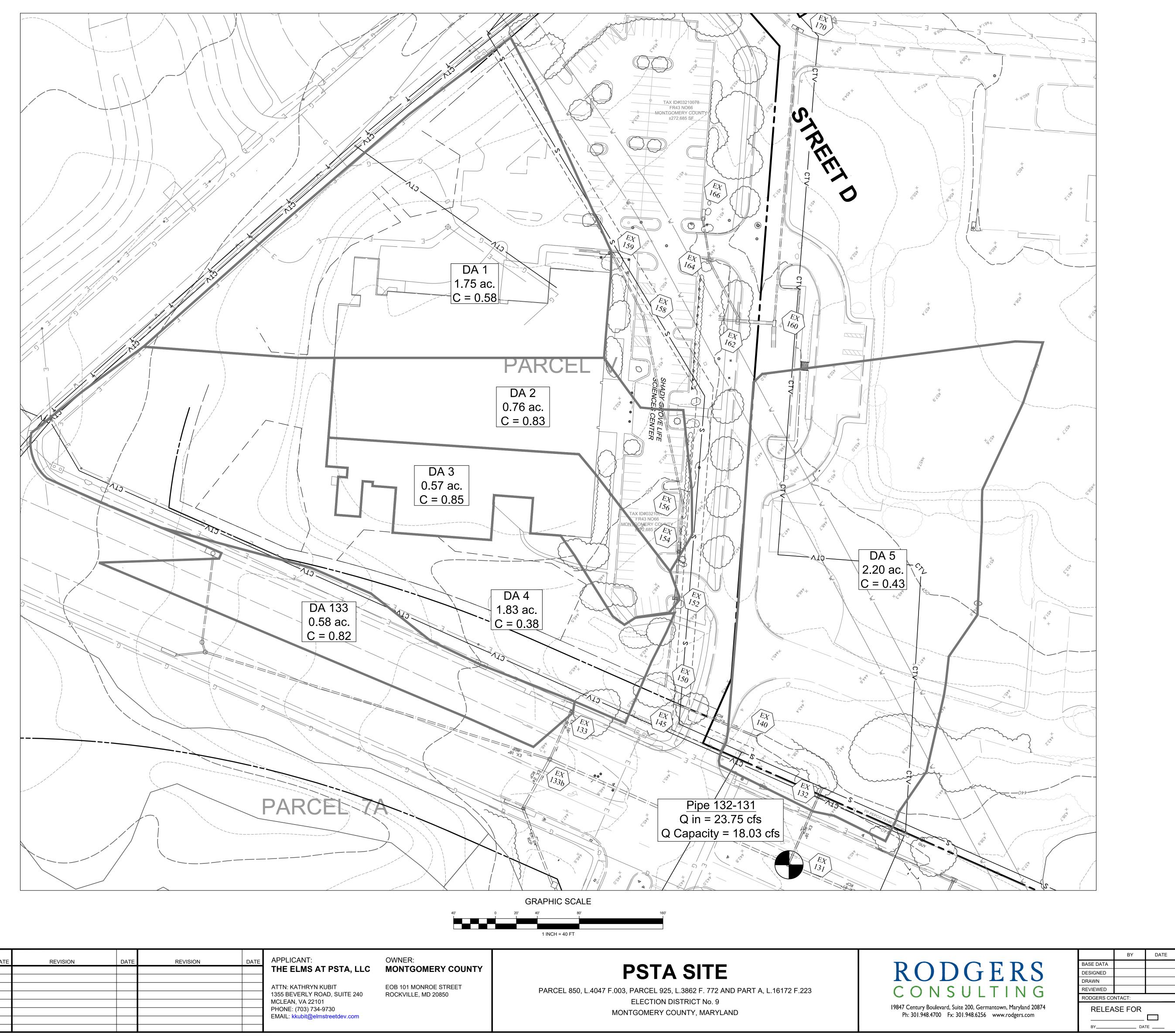
			AGEMENT SUMM		
FACILITY #	DRAINAGE AREA	IMPERV. AREA	% IMPERVIOUS	ESD _V @ 2.6"	Creditted Volum
	[SF]	[SF]	720/	[cf]	[cf]
BS-3	9301	6653	72%	1,390	1,078
BS-4	8985	5829	65%	1,226	1,120
BS-5	9047	6237	69%	1,313	1,120
BS-6 BS-7	9087 7867	6289 4721	69% 60%	1,319 1,006	1,120 895
MBR 8	17437	13169	76%	2,758	2,758
MBR 9	7356	4867	66%	1,036	1.036
MBR 10	19759	16062	81%	3,339	3,339
MBR 11	12759	7236	57%	1.548	1,548
MBR 12	8290	4326	52%	934	934
MBR 13	17426	10785	62%	2,303	2,303
MBR 14	16679	9089	54%	1,951	1,951
MBR 15	19220	10291	54%	2,207	2,207
MBR 16	17568	4125	23%	990	990
MBR 17	12862	3426	27%	808	808
MBR 18	13306	5171	39%	1,153	1,153
MBR 19	19857	8431	42%	1,850	1,850
MBR 20	6765	4795	71%	1,011	490
MBR 21	7871	6050	77%	1,262	490
MBR 22	6765	5323	79%	1,114	490
MBR 23	6765	5056	75%	1,055	490
MBR 24	7427	5416	73%	1,143	490
MBR 25	16708	4639	28%	1,086	491
MBR 26	4432	2212	50%	480	492
MBR 27	5211	2966	57%	632	493
MBR 28	11170	6848	61%	1,452	494
BB 30	2299	2031	88%	423	495
BB 31	2274	2007	88%	414	496
BB 32	1886	1618	86%	335	497
BB 33	2001	1734	87%	360	498
BB 34	2526	2258	89%	465	499
BB 35	3196	2927	92%	602	500
BB 36	1994	1726	87%	359	501
BB 37	1922	1654	86%	341	502
BB 38	1859	1591	86%	330	503
BB 39	2022	1752	87%	364	504
BB 40	3306	2848	86%	595	505
BB 41	5357	4872	91%	1,010	506
Sheetflow to Conservation	13765	13765	100%	2,833	508
			ESD Total	44,800	38,542
CMP-1	27601	23422	85%		4888.32
CMP-2	24998	16376	66%		3477.74
CMP-3	38157	26686	70%		5651.33
CMP-4	41525	31606	76%		6622.48
CMP-5	31565	24955	79%		5227.61
CMP-7	32947	13278	40%		6371.15
CMP-6	43531	30186	69%		2950.25
CMP-8	30789	26130	85%		5500.05
CMP-9	38982	29440	76%		5523.80
CMP-10	22722	10082	44%		2218.65
CMP-11	26747	14488	54%		3121.96
CMP-12	43360	19317	45%		4247.43
CMP-13	42495	22416	53%		4849.83
CMP-15	28735	20588	72%		4339.32
CMP-16	22824	18129	79%		3793.18
CMP-17	24294	15530	64%		3326.16
CMP-18	37504	11719	31%		2701.77
CMP-19	29425	24190	82%		5046.18
CMP-20	35506	30176	85%		6283.19
CMP-21	30853	20068	65%		4252.54
	21044	16091	76%		3387.62
CMP-22		35933	83%		7500.55
CMP-23	43309		E 40/		5057.57
CMP-23 CMP-24	43360	23423	54%		
CMP-23 CMP-24 CMP-25	43360 43480	23423 26315	61%		5645.05
CMP-23 CMP-24 CMP-25 CMP-26	43360 43480 36629	23423 26315 29075	61% 79%		6083.40
CMP-23 CMP-24 CMP-25	43360 43480	23423 26315	61% 79% 49%		
CMP-23 CMP-24 CMP-25 CMP-26	43360 43480 36629	23423 26315 29075	61% 79%		6083.40
CMP-23 CMP-24 CMP-25 CMP-26	43360 43480 36629	23423 26315 29075 17528	61% 79% 49%	1	6083.40 3809.08
CMP-23 CMP-24 CMP-25 CMP-26 CMP-27	43360 43480 36629	23423 26315 29075 17528 ESD _v Re	61% 79% 49% Structural Total equired for the Site		6083.40 3809.08 121,876
CMP-23 CMP-24 CMP-25 CMP-26 CMP-27	43360 43480 36629 35656	23423 26315 29075 17528 ESD _v Re e County Right-of-V	61% 79% 49% Structural Total equired for the Site Way Improvements		6083.40 3809.08 121,876 56,670 3,078
CMP-23 CMP-24 CMP-25 CMP-26 CMP-27	43360 43480 36629 35656	23423 26315 29075 17528 ESD _v Re e County Right-of-V Combine	61% 79% 49% Structural Total equired for the Site Nay Improvements d ESD _V (If Required)	1	6083.40 3809.08 121,876 56,670 3,078 59,748
CMP-23 CMP-24 CMP-25 CMP-26 CMP-27	43360 43480 36629 35656	23423 26315 29075 17528 ESD _v Re e County Right-of-V Combine ESDv thr	61% 79% 49% Structural Total equired for the Site Nay Improvements d ESD _V (If Required) ough ESD Provided	1	6083.40 3809.08 121,876 56,670 3,078 59,748 8,542
CMP-23 CMP-24 CMP-25 CMP-26 CMP-27	43360 43480 36629 35656	23423 26315 29075 17528 ESD _v Re e County Right-of-V Combine ESDv thr Structural T	61% 79% 49% Structural Total equired for the Site Nay Improvements d ESD _v (If Required) ough ESD Provided reatment Required	1	6083.40 3809.08 121,876 56,670 3,078 59,748 18,542 18,128
CMP-23 CMP-24 CMP-25 CMP-26 CMP-27	43360 43480 36629 35656	23423 26315 29075 17528 ESD _v Re e County Right-of-V Combine ESDv thr Structural T Structural T	61% 79% 49% Structural Total equired for the Site Nay Improvements d ESD _V (If Required) ough ESD Provided	1	6083.40 3809.08 121,876 56,670 3,078 59,748 8,542

				Drain				MBR Facility Design Parameters							
Drainage Area / Facilities	DA [ft ²]	Impv. Area [ft ²]	Impv %	Rv	ESD _v @ 1" [ft ³]	ESD _v @ 2.6" [ft ³]	Ponding Area [ft ²]	Media Area [ft ²]	ESD _v Treated [ft ³]	P _e Provided [in.]	ESD _v Provided [ft ³]	Media Depth [ft]	Media Treatment (V1) [ft ³]	Ponding Depth [ft]	Ponding Treatment (V2) [ft ³]
BS-3	9,301	6,653	72%	0.69	535	1,390	0	770	1,078	2.02	1,078	3.5	1078	0	0
BS-4	8,985	5,829	65%	0.63	472	1,226	0	800	1,120	2.37	1,120	3.5	1120	0	0
BS-5	9,047	6,237	69%	0.67	505	1,313	0	800	1,120	2.22	1,120	3.5	1120	0	0
BS-6	9,087	6,289	69%	0.67	507	1,319	0	800	1,120	2.21	1,120	3.5	1120	0	0
BS-7	7,867	4,721	60%	0.59	387	1,006	0	639	895	2.31	895	3.5	894.6	0	0
MBR 8	17,437	13,169	76%	0.73	1,061	2,758	1,352	937	2,831	2.60	2,758	4.5	1686.6	1	1145
MBR 9	7,356	4,867	66%	0.65	398	1,036	829	618	1,227	2.60	1,036	3.5	865.2	0.5	362
MBR 10	19,759	16,062	81%	0.78	1,284	3,339	1,607	1,452	3,378	2.60	3,339	4.5	2613.6	0.5	765
MBR 11	12,759	7,236	57%	0.56	595	1,548	844	677	1,599	2.60	1,548	4.5	1218.6	0.5	380
MBR 12	8,290	4,326	52%	0.52	359	934	854	637.0	1,010	2.60	934	2.5	637	0.5	373
MBR 13	17,426	10,785	62%	0.61	886	2,303	1344	1114	2,397	2.60	2,303	4	1782.4	0.5	615
MBR 14	16,679	9,089	54%	0.54	751	1,951	1,234	979	2,120	2.60	1,951	4	1566.4	0.5	553
MBR 15	19,220	10,291	54%	0.53	849	2,207	1631	1406	2,446	2.60	2,207	3	1687.2	0.5	759
MBR 16	17,568	4,125	23%	0.26	381	990	940	747	1,169	2.60	990	2.5	747	0.5	422
MBR 17	12,862	3,426	27%	0.29	311	808	608	460	819	2.60	808	3	552	0.5	267
MBR 18	13,306	5,171	39%	0.40	444	1,153	688	538	1,275	2.60	1,153	4.5	968.4	0.5	307
MBR 19	19,857	8,431	42%	0.43	712	1,850	1469	1130	2,006	2.60	1,850	3	1356	0.5	650
MBR 20	6,765	4,795	71%	0.69	389	1,011	175	175	490	1.26	490	4.5	315	1	175
MBR 21	7,871	6,050	77%	0.74	485	1,262	175	175	490	1.01	490	4.5	315	1	175
MBR 22	6,765	5,323	79%	0.76	428	1,114	175	175	490	1.14	490	4.5	315	1	175
MBR 23	6,765	5,056	75%	0.72	406	1,055	175	175	490	1.21	490	4.5	315	1	175
MBR 24	7,427	5,416	73%	0.71	439	1,143	175	175	490	1.12	490	4.5	315	1	175
MBR 25	16,708	4,639	28%	0.30	418	1,086	366	262	629	1.50	629	4.5	471.6	0.5	157
MBR 26	4,432	2,212	50%	0.50	185	480	767	602	944	2.60	480	2.5	602	0.5	342
MBR 27	5,211	2,966	57%	0.56	243	632	671	470	755	2.60	632	2.5	470	0.5	285
MBR 28	11,170	6,848	61%	0.60	559	1,452	1068	869	1,875	2.60	1,452	4	1390.4	0.5	484
BB 30	2,299	2,031	88%	0.85	163	423	216	216	432	2.60	423	2.5	216	1	216
BB 31	2,274	2,007	88%	0.84	159	414	216	216	475	2.60	414	3	259.2	1	216
BB 32	1,886	1,618	86%	0.82	129	335	216	216	432	2.60	335	2.5	216	1	216
BB 33	2,001	1,734	87%	0.83	138	360	216	216	432	2.60	360	2.5	216	1	216
BB 34	2,526	2,258	89%	0.85	179	465	240	240	480	2.60	465	2.5	240	1	240
BB 35	3,196	2,927	92%	0.87	232	602	240	240	672	2.60	602	4.5	432	1	240
BB 36	1,994	1,726	87%	0.83	138	359	250	250	500	2.60	359	2.5	250	1	250
BB 37	1,922	1,654	86%	0.82	131	341	250	250	500	2.60	341	2.5	250	1	250
BB 38	1,859	1,591	86%	0.82	127	330	250	250	500	2.60	330	2.5	250	1	250
BB 39	2,022	1,752	87%	0.83	140	364	250	250	500	2.60	364	2.5	250	1	250
BB 40	3,306	2,848	86%	0.83	229	595	433	433	866	2.60	595	2.5	433	1	433
BB 41	5,357	4,872	91%	0.87	388	1,010	433	433	1,039	2.60	1,010	3.5	606.2	1	433
												Min	. Width	P _E	(in.)
Sheetflow to Conservation	13,765	13,765	100%	0.95	1,090	2,833			1,090	1.00	1,090	-	100'		1"
Summary	Sum ESD _v Required	159,748	Sum ESD _v	Available	17,231	44,800	Sum ESD	_v via ESD	42,180	Sum ESD _v Provided	38,542	Sum P _E Required	1.8	Sum P _E Provided	0.434

		-																 								
SBMP # DA (sf)	CMP-1 27601	CMP-2 24998	CMP-3 38157	CMP-4 41525	CMP-5 31565	CMP-6 43531	CMP-7 32947	CMP-8 30789	CMP-9 38982	CMP-10 22722	CMP-11 26747	CMP-12 43360	CMP-13 42495	CMP-15 28735	CMP-16 22824	CMP-17 24294	CMP-18 37504	CMP-19 29425	CMP-20 35506	CMP-21 30853	CMP-22 21044	CMP-23 43309	CMP-24 43360	CMP-25 43480	CMP-26 36629	CMP-27 35656
D DA (ac.)	0.63	0.57	0.88	0.95	0.72	1.00	0.76	0.71	0.89	0.52	0.61	1.00	0.98	0.66	0.52	0.56	0.86	0.68	0.82	0.71	0.48	0.99	1.00	1.00	0.84	0.82
a Impv (sf)	23422	16376	26686	31606	24955	30186	13278	26130	29440	10082	14488	19317	22416	20588	18129	15530	11719	24190	30176	20068	16091	35933	23423	26315	29075	17528
n Impv (ac.) a Impv %	0.54 84.9%	0.38	0.61 69.9%	0.73	0.57 79.1%	0.69	0.30	0.60 84.9%	0.68 75.5%	0.23	0.33 54.2%	0.44	0.51 52.7%	0.47	0.42	0.36	0.27 31.2%	0.56 82.2%	0.69 85.0%	0.46	0.37 76.5%	0.82 83.0%	0.54	0.60	0.67 79.4%	0.40 49.2%
e Impv. RCN	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	98
A Perv. RCN	61	61	61	61	61	61	61	61	61	61	61	61	61	61	61	61	61	61	61	61	61	61	61	61	61	61
r Composite RCN e C Factor	93 0.80	86 0.68	87 0.70	90 0.74	91 0.76	87 0.70	76 0.51	93 0.80	89 0.74	78 0.54	82 0.60	78 0.54	81 0.59	88 0.72	91 0.77	85 0.67	73 0.45	92 0.78	93 0.80	86 0.67	90 0.75	92 0.79	81 0.60	84 0.64	91 0.77	80 0.57
a Time of Concentration (min)	9	9	9	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Time of Concentration (hour)	0.15	0.15	0.15	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
Volume Available	4866.30	3464.13	5617.14	6613.02	5208.18	6357.86	2946.14	5428.90	6163.11	2212.15	3114.92	4236.55	4831.48	4325.96	3782.42	3291.54	2691.50	5035.82	6268.97	4247.50	3365.72	7476.12	5037.22	5602.46	6066.44	3804.23
S Surface	437 433.5	435 431.5	438 434.5	444.5 441	444 439.5	451 446.5	447.5 443	468.5 465	469.5 466	466.5 462	466.25 461.75	466.3 461.8	467.5 463	460.7 457.2	456.3 452.8	451 446.5	472.5 468	443.5 440	443 439.5	447.5 444	452.7 449.2	452.9 449.4	450.5 446	456.9 452.4	454.4 449.9	455.5 452
F Pipe Length S Pipe Diamter	92 1.25	15 1.25	9 1.25	20	8	109 1.25	15 1.25	70 1.25	34 1.25	95 1.25	11 1.25	104 1.25	167	16 1.25	12 1.25	25 1.25	60 1.25	29 1.25	95 1.25	237	280 2	278	116 1.25	12 1.25	80 1.25	1.25
o Surface @ FS	436.25 432.2	435.5	437.75 433.65	443	444.25	447.75 443.5	447.75 442.8	468.5	469.5	466	466	466 459.7	467	460.7	456.1	450.5	472 467.3	442.5	439	448	453 445.8	452 445.60	448	457	455	454
Invert into FS		431.3		438	440			465.5	464.5	461	461		461.1	455.7	451.1	445.5		438	434.5	442.4			443	452	449	449.5
Overflow Pipe Invert Overflow Pipe Diameter [in.]	432.10 15	431.20 15	433.55 15	437.90 15	439.90 15	443.40 18	442.70 15	465.40 15	464.40 15	460.90 15	460.90 15	459.60 15	461.00 24	455.60 15	451.00 15	445.40 15	467.20 15	437.90 15	434.40 15	442.30 24	445.70 24	445.50 24	442.90 15	451.90 15	448.90 15	449.40 15
SBMP / Overflow Gap [ft.]	-0.15	-0.45	-0.35	-0.25	-0.35	-0.35	-0.25	-0.35	-0.35	-0.45	-0.45	-0.45	-0.45	-0.15	-0.45	-0.35	-0.45	-0.45	-0.35	-0.45	-0.45	-0.25	-0.35	-0.35	-0.35	-0.45
SBMP Pipe Invert	431.00	430.40	432.65	436.90	439.00	442.50	441.70	464.50	463.50	460.10	460.10	458.80	460.20	454.50	450.20	444.50	466.40	437.10	433.50	441.50	444.90	444.50	442.00	451.00	448.00	448.60
t sBMP Pipe Diameter [in.] e SBMP Pipe C	15 431.63	15 431.03	15 433.28	15 437.53	15 439.63	15 443.13	15 442.33	15 465.13	15 464.13	15 460.73	15 460.73	15.0 459.43	15 460.83	15 455.13	15 450.83	15 445.13	15 467.03	15 437.73	15 434.13	15 442.13	15 445.53	15 445.13	15 442.63	15 451.63	15 448.63	15 449.23
Target Rainfall P R _v	2.6 0.81	2.6 0.64	2.6 0.68	2.6 0.74	2.6 0.76	2.6 0.67	2.6 0.41	2.6 0.81	2.6 0.73	2.6 0.45	2.6 0.54	2.6 0.45	2.6 0.52	2.6 0.69	2.6 0.76	2.6 0.63	2.6 0.33	2.6 0.79	2.6 0.81	2.6 0.64	2.6 0.74	2.6 0.80	2.6 0.54	2.6 0.59	2.6 0.76	2.6 0.49
Qa	2.12	1.66	1.77	1.91	1.98	1.75	1.07	2.12	1.90	1.17	1.40	1.17	1.36	1.81	1.99	1.63	0.86	2.05	2.12	1.65	1.92	2.07	1.39	1.55	1.99	1.28
R CN	95.57	90.53	91.77	93.41	94.16	91.61	82.02	95.57	93.26	83.59	87.03	83.66	86.56	92.24	94.25	90.07	78.15	94.93	95.60	90.39	93.50	95.12	86.98	89.05	94.24	85.33
- la 5 la/P	0.09	0.21	0.18	0.14	0.12	0.18	0.44	0.09	0.14	0.39	0.30	0.39	0.31 0.12	0.17	0.12	0.22	0.56	0.11	0.09	0.21	0.14	0.10	0.30	0.25	0.12	0.34
5 qu	1010	1010	1010	1010	1010	1010	853	1010	1010	886	970	888	958	1010	1010	1010	0.22	1010	1010	1010	0.05	1010	969	1010	1010	0.13 927
A	0.00099	0.00090	0.00137	0.00149	0.00113	0.00156	0.00118	0.00110	0.00140	0.00082	0.00096	0.00156	0.00152	0.00103	0.00082	0.00087	0.00135	0.00106	0.00127	0.00111	0.00075	0.00155	0.00156	0.00156	0.00131	0.00128
TR-55 Design Q	2.12	1.51	2.44	2.87	2.26	2.76	1.08	2.36	2.68	0.84	1.30	1.62	1.99	1.88	1.64	1.43	0.90	2.19	2.73	1.85	1.46	3.25	2.10	2.44	2.64	1.52
O Average head (h)	0.47	0.18	0.27	0.38	0.27	0.27	0.38	0.27	0.27	0.17	0.17	0.17	0.18	0.47	0.18	0.27	0.18	0.17	0.27	0.17	0.18	0.38	0.27	0.27	0.27	0.17
i g	32.2	32.2	32.2	32.2	32.2	32.2	32.2	32.2	32.2	32.2	32.2	32.2	32.2	32.2	32.2	32.2	32.2	32.2	32.2	32.2	32.2	32.2	32.2	32.2	32.2	32.2
C Q Capacity (Orifice) TR-55 vs Orifice Capacity?	4.072	2.472 Yes	3.099 Yes	3.618	3.099 Yes	3.099	3.618 Yes	3.099	3.099 Yes	2.472 Yes	2.472	2.472 Yes	2.472 Yes	4.072 Yes	2.472 Yes	3.099 Yes	2.472 Yes	2.472 Yes	3.099	2.472 Yes	2.472 Yes	3.618 Yes	3.099 Yes	3.099	3.099 Yes	2.472 Yes
	Yes			Yes		Yes		Yes			Yes		res				Tes		Yes				Tes	Yes		Tes
R Time of Concentration a t 1 Year Intensity	9 4.5	9 4.5	9 4.5	5 4.4	5 4.4	5 4.4	5	5 4.4	5 4.4	5 4.4	5 4.4	5 4.4	5 4.4	5 4.4	5 4.4	5 4.4	5 4.4	5 4.4	5 4.4	5 4.4	5 4.4	5	5 4.4	5 4.4	5 4.4	5 4.4
i 10 Year Intensity	6.06	6.06	6.06	7.07	7.07	7.07	7.07	7.07	7.07	7.07	7.07	7.07	7.07	7.07	7.07	7.07	7.07	7.07	7.07	7.07	7.07	7.07	7.07	7.07	7.07	7.07
n 100 Year Intensity	8.48	8.48	8.48	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6
a Q ₁ (cfs)	2.281	2.281	2.281	2.230	2.230	2.230	2.230	2.230	2.230	2.230	2.230	2.230	2.230	2.230	2.230	2.230	2.230	2.230	2.230	2.230	2.230	2.230	2.230	2.230	2.230	2.230
C Q ₁₀ (cfs) C Q ₁₀₀ (cfs)	3.072 4.299	3.072 4.299	3.072 4.299	3.584 4.866	3.584 4.866	3.584 4.866	3.584 4.866	3.584 4.866	3.584 4.866	3.584 4.866	3.584 4.866	3.584 4.866	3.584 4.866	3.584 4.866	3.584 4.866	3.584 4.866	3.584 4.866	3.584 4.866	3.584 4.866	3.584 4.866	3.584 4.866	3.584 4.866	3.584 4.866	3.584 4.866	3.584 4.866	3.584 4.866
e Q Capacity (Orifice)	4.072	2.472	3.099	3.618	3.099	3.099	3.618	3.099	3.099	2.472	2.472	2.472	2.472	4.072	2.472	3.099	2.472	2.472	3.099	2.472	2.472	3.618	3.099	3.099	3.099	2.472
k Rational vs Orifice Capacity?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Pipe Length (FS to CMP)	23	14	70	13	7	10	22	9	26	35	32	59	56	12	25	33	20	63	25	6	14	11	12	15	15	26
F C Pipe Slope (FS to CMP)	1.20%	1.20%	1.20%	1.50%	1.50%	1.20%	1.10%	1.20%	1.20%	1.10%	1.10%	1.10%	1.20%	1.20%	1.10%	1.10%	1.10%	1.10%	1.10%	1.10%	1.10%	1.10%	1.10%	1.10%	1.10%	1.10%
. P Invert into CMP C _L in	430.7 431.95	430.2 431.45	431.8 433.05	436.7 437.95	438.8 440.05	442.3 443.55	441.4 442.65	464.3 465.55	463.1 464.35	459 460.25	459.7 460.95	458.1 459.35	459.5 460.75	454.3 455.55	449.9 451.15	443.75 445.00	466.1 467.35	436.4 451.40	433.2 448.20	439.5 454.50	444.8 459.80	444.3 459.30	441.8 456.80	450.8 465.80	447.8 462.80	447 462.00
CMP #	CMP-1	CMP-2	CMP-3	CMP-4	CMP-5	CMP-6	CMP-7		CMP-9	CMP-10	CMP-11	CMP-12	CMP-13	CMP-15	CMP-16	CMP-17	CMP-18	CMP-19	CMP-20	CMP-21	CMP-22	CMP-23	CMP-24	CMP-25	CMP-26	CMP-27
CMP Struc Top Elev (High)	437	435.5	437	443	445	448	448	CMP-8 472	470	465	465	465	465	459	456	446.5	477	443	441.5	448	454	452	446	459	453	453
CMP Struc Top Elev (Low)	434	434.5	436	439	444	446	445	470	468	462	461	461	462	459	454.25	445.5	475	441	436.5	442	450	448	444	457	451	450
CMP Pipe Diameter	48	36	36	48	48	48	54	66	66	54	60	48	60	60	54	66	48	60	48	42	54	60	54	60	54	54
C CMP Invert M CMP CL	427.95 429.95	428.45 429.95	430.05 431.55	433.95 435.95	436.05 438.05	439.55 441.55	438.15 440.4	460.05 462.8	458.85 461.6	455.75 458	455.95 458.45	455.35 457.35	455.75 458.25	450.55 453.05	446.65 448.9	439.5 442.25	463.35 465.35	432.65 435.15	430.45 432.45	437.25 439	441.55 443.8	440.55 443.05	438.55 440.8	447.05 449.55	444.55 446.8	443.75 446
CMP Crown	431.95	431.45	433.05	437.95	440.05	443.55	442.65	465.55	464.35	460.25	460.95	459.35	460.75	455.55	451.15	445	467.35	437.65	434.45	440.75	446.05	445.55	443.05	452.05	449.05	448.25
s y Stems	6	10	15	6	15	7	2	6	4	3	2	6	4	4	2	3	3	2	6	3	3	6	3	5	6	4
s Length t System Length	53.5 61.5	40.5 46.5	44.5 50.5	76.5 84.5	16 24	61 69	81.5 90.5	23 34	50 61	34.5 43.5	67 77	45 53	48 58	41.5 51.5	108 117	32 43	61 69	116 126	72 80	138 145	59 68	49.5 59.5	94 103	43.5 53.5	51 60	47.5 56.5
e m Width	34	46.5	66	34	88	40	11.25	34 46.75	30.25	43.5	12.5	34	27.5	27.5	117	43 22	16	126	80 34	145	18	42.5	103	35	38.25	24.75
CMP System Volume Provided	4888.31817	3477.74307	5651.3325	6622.4773	5227.6102	6371.1499	2950.25	5500.0452	5524	2218.6516	3121.9577	4247.4333	4849.8337	4339.3249	3793.1786	3326.1612	2701.7697	5046.1832	6283.1853	4252.5384	3387.6186	7500.5525	5057.5715	5645.0493	6083.3996	3809.0829
CMP System Volume Check	Good	Good	Good	Good	Good	Good	Good	Good	Partial	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good
CMP Structure Depth (High) CMP Structure Depth (Low)	9.05 6.05	7.05 6.05	6.95 5.95	9.05 5.05	8.95 7.95	8.45 6.45	9.85 6.85	9.95	9.15	9.25 6.25	9.05 5.05	9.65 5.65	9.25 6.25	8.45 8.45	9.35 7.6	7	13.65 11.65	10.35 8.35	11.05 6.05	10.75 4.75	12.45 8.45	11.45 7.45	7.45 5.45	9.95	8.45 6.45	9.25 6.25
		428.45					438.15	460.05	458.85	455.75					446.65					437.25	441.55		438.55		444.55	443.75
Pipe Length (CMP to JF)	427.95 7	428.45 6	430.05 20	433.95 7	436.05 7	439.55 9	438.15	460.05 10	458.85 14	455.75 6	455.95 10	455.35 10	455.75 10	450.55 17	446.65 10	439.5 68	463.35 45	432.65 26	430.45 8	437.25 8	441.55 6	440.55 9	438.55 9	447.05 7	444.55	443./5
Pipe Slope (CMP to JF)	1.10%	1.10%	1.10%	1.10%	1.10%	1.10%	1.10%	1.05%	1.20%	1.20%	1.20%	1.20%	1.20%	1.20%	1.10%	2.00%	1.10%	1.10%	1.10%	1.10%	1.10%	1.10%	1.10%	1.10%	1.10%	1.10%
JF Struc #							T	Ī						t T				t T	Ī		T			t T		
JF Struc Top Elev	433.75	434	436	438.5	444.5	446	444.5	469	469	462	462	462	462	457	454.5	444	474	440.5	436	449	450	448	447	458	451	451
F Invert Into JF	427.8	428.3	429.8	433.8	435.9	439.4	438	459.9	458.6	455.6	455.8	455.2	455.6	450.3	446.5	438.1	462.8	432.3	430.3	437.1	441.4	440.4	438.4	446.9	444.4	443.6
JF Structure Depth	427.7 6.05	428.2 5.8	429.7 6.3	433.7 4.8	435.8 8.7	439.3 6.7	437.9 6.6	459.8 9.2	458.5 10.5	455.5 6.5	455.7 6.3	455.1 6.9	455.5 6.5	450.2 6.8	446.4 8.1	438 6	462.7	432.2 8.3	430.2 5.8	437	441.3 8.7	440.3 7.7	438.3 8.7	446.8 11.2	444.3 6.7	443.5 7.5
																				24						
Pipe Length	8 1.10%	7	34 1.10%	11 2.00%	7 2.00%	29 1.50%	11 1.25%	27 1.05%	27 1.05%	6 1.10%	15 1.10%	15 1.10%	10 1.10%	19 1.10%	13 1.10%	35 2.50%	108 1.10%	20 1.10%	17 1.10%	21 1.10%	106 1.10%	19 1.10%	11 1.10%	58 1.10%	28 1.10%	19 1.10%
H Invert Into MH	427.6	428.1	429.3	433.4	435.6	438.8	437.7	459.5	458.2	455.4	455.5	454.9	455.3	449.9	446.2	437.1	461.5	431.9	430	436.7	440.1	440	438.1	446.1	443.9	443.2
M MH #																										
a Surface Elev.	433.5	434.5	436.5	438	445	446.5	444.25	467	468	461	461	461	461	456.5	454.1	442.5	472	437	435	440	452	448	447	457	455	453
n Invert in to MH	427.6	428.1	429.3	433.4	435.6	438.8	437.7	459.5	458.2	455.4	455.5	454.9	455.3	449.9	446.2	437.1	461.5	431.9	430	436.7	440.1	440	438.1	446.1	443.9	443.2
o Invert out of MH I Manhole Depth	427.5 6	428 6.5	429.2 7.3	433.3	435.5 9.5	438.7 7.8	437.6 6.65	459.4 7.6	458.1 9.9	455.3 5.7	455.4 5.6	454.8 6.2	455.2 5.8	449.8 6.7	446.1 8	437 5.5	461.4	431.8 5.2	429.9 5.1	436.6 3.4	440	439.9 8.1	438 9	446	443.8	443.1 9.9
e Drop from FS to MH Inv's	3.40	2.30	3.35	3.50	3.40	3.70	4.00	5.00	5.30	4.70	4.60	3.90	4.90	4.60	8 4.00	7.40	4.90	5.2	3.50	4.80	4.80	4.50	3.90	4.90	4.10	5.40
										• • • •	• • •		. <u> </u>	• <u> </u>	· · · · · ·						• <u> </u>		· · · · · · · · · · · · · · · · · · ·	• <u> </u>		

Appendix B - Project Downstream Conveyance Considerations:

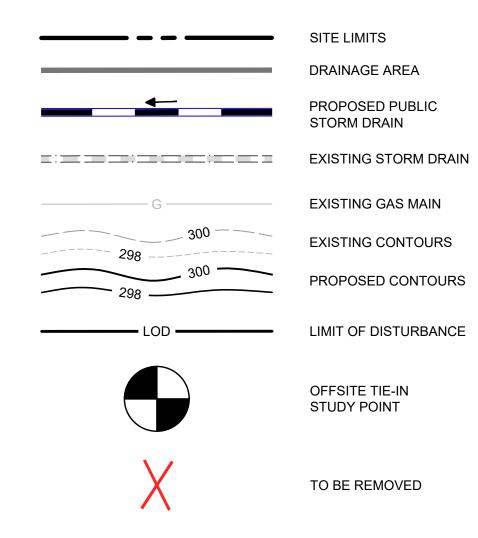
An analysis was conducted on the existing receiving culvert found on site. Two 84" culverts run south to north at the northeastern corner of the site underneath Key West Avenue. Key West Avenue is an urban major highway and therefore analysis regarding safe conveyance of the 50-year storm was conducted on the existing 84" culverts.


Methodology from the United States Department of Agriculture's Technical Release 55 (TR-55) was utilized to estimate total runoff the existing receiving culvert in the existing and final design condition. The total drainage area to the existing receiving culvert was determined to be approximately 148.15 acres, of which approximately 75% was estimated to be impervious area in the existing condition and 80% was estimated to be impervious area in the final design condition. Assuming all non-impervious area was open space in good conditions and given a C to D HSG ratio of 4:1, the RCN was found to be 92 in the existing condition and 93 in the final design condition. 25 minutes was used as a time of concentration in both the existing and final design condition, total runoff to the existing receiving culvert was determined.

Existing Culvert Computations	Existing Culvert Computations Summary											
	ft²	ac.										
Total Drainage Area	6453490	148.15										
Existing	%	ac.	С Туре	D Type	RCN	Тс	Q					
Estimated Green Space	24.87%	36.84	29.47	7.37	92	25	760.09					
Estimated Impervious	75.13%	111.31	89.05	22.26	92	0.42						
Final	%	ac.	С Туре	D Type	RCN	Тс	Q					
Estimated Green Space	20.16%	29.87	23.90	5.97	0.2	25	769.05					
Estimated Impervious	79.84%	118.28	94.62	23.66	93	0.42						

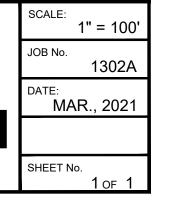
The Hydraflow Express extension was used in AutoCAD to analyze the impact to the existing culvert. In the final design condition, H_w/D is equal to 1.23 and there is 3.7 feet of freeboard. All Maryland State Highway culvert design criteria have been met by the existing receiving culvert in the final design condition.

For further analysis of the culvert conveyance, please see the floodplain delineation study FLDSTUDY-286994. Rodgers acknowledges DPS does not review or approve but included for reference.


From Structure	To Structure	Drainage Area	Runoff Coeff. C	CA	Accum. Area	Accum. CA	т _с	Rainfall Intensity	Runoff Q	Minimum Slope	Friction Velocity	Dia.	Pipe Material	Manning's N	Invert El	evations	Slope	Length			Partial Flow Velocity	Capacity Used	Flow Time
		(Ac.)	00011.0	(Incre.)	(Ac.)	(Incre.)	(min.)	(In./hr.)	(ft ³ /s)	Clope	(ft./s)	In.	material		(ft)	(%)	(ft.)	(ft ³ /s)	(ft./s)	(ft./s)	%	(min.)
132	131	7.11	0.53	3.78	7.11	3.78	8.00	6.28	23.75	5.087	13.44	18	CL. IV RCP	0.013	436.13	433.87	2.94%	77	18.03	10.21	0.00	131.75%	0.13

ALLA I AVAULOCAUNTION FIAM							
Ingorner	REVISION	DATE	REVISION	DATE	REVISION	DATE	
וחואו-חו							THE ELMS AT PST
							ATTN: KATHRYN KUBIT
cisiiaia							1355 BEVERLY ROAD, SUI MCLEAN, VA 22101
gers.in							PHONE: (703) 734-9730 EMAIL: kkubit@elmstreetde
ואסט							

	Exis	sting @ Ex	132
DA	Area [sf]	Area [ac.]	lmp
1	76081	1.75	4
2	33084	0.76	÷
3	24968	0.57	U,
4	79794	1.83	
5	95928	2.20	2
Total	309855	7.11	
	E>	kisting @ 13	33
133	25214	0.58	8
Total	25214	0.58	


LEGEND

PROFESSIONAL CERTIFICATION

OFFSITE STORM DRAIN EXISTING TIE IN CONDITION

"I hereby certify that these documents were prepared or approved by me, and that I am a duly licensed professional engineer under the laws of the State of Maryland, License No. 32599, Expiration Date: 1/22/22."

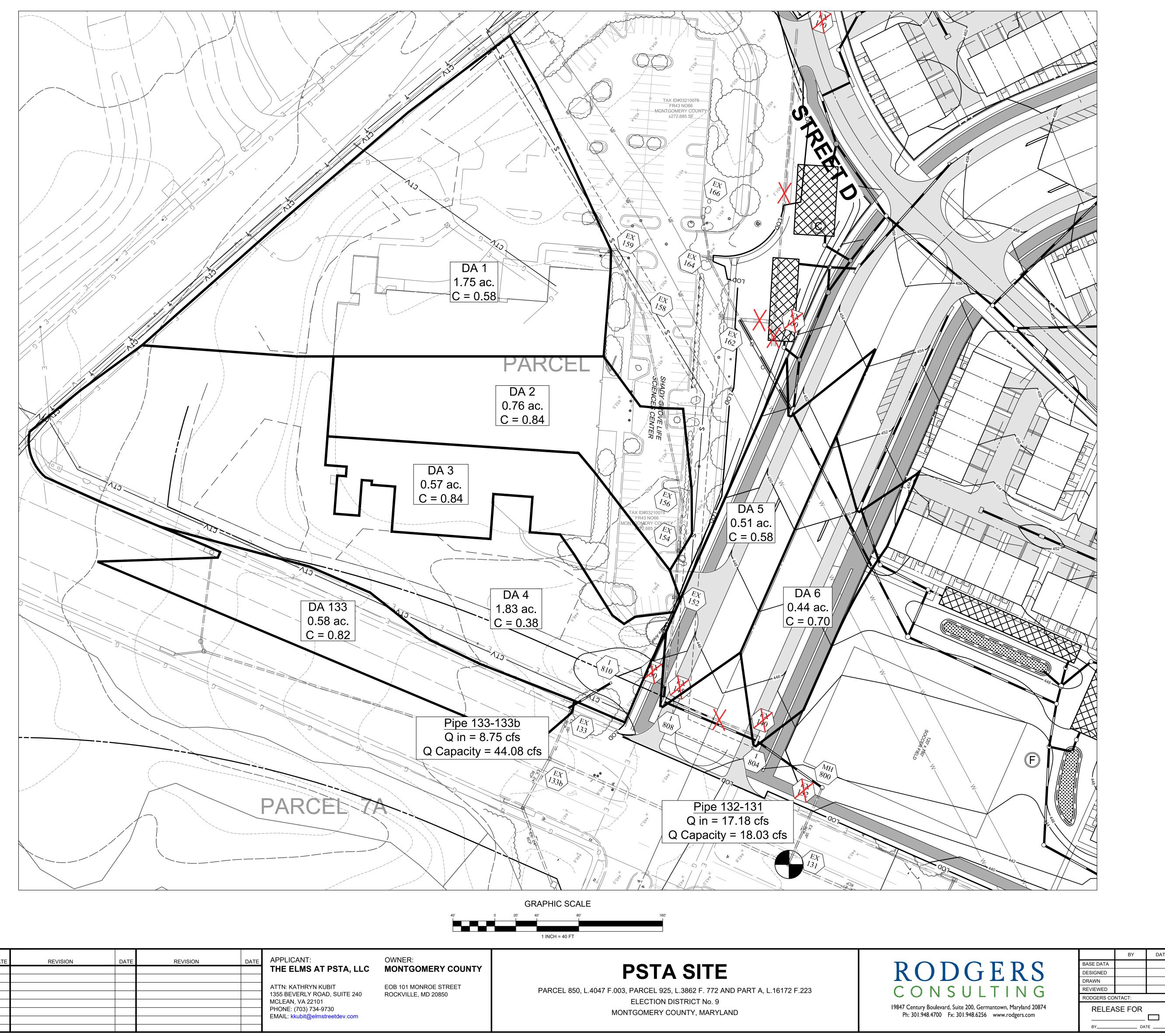
OF MAR

LIMIT OF DISTURBANCE

PROPOSED CONTOURS

EXISTING CONTOURS

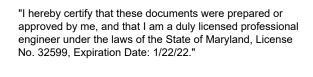
EXISTING GAS MAIN


PROPOSED PUBLIC STORM DRAIN

DRAINAGE AREA

pv. (%) С 46% 0.58 89% 0.83 92% 0.85 14% 0.38 22% 0.43 0.53 87% 0.82

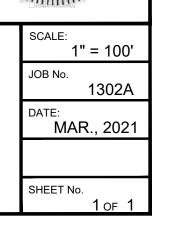
From Structure		Drainage Area	Runoff Coeff. C	CA	Accum. Area	Accum. CA	T _C	пцепэцу	Runoff Q	Minimum Slope	velocity	Dia.	Pipe Material	Manning's N	Invert El	evations	Slope	Length	Full Flow Capacity		Partial Flow Velocity	Capacity Used	Flow Time
		(Ac.)		(Incre.)	(Ac.)	(Incre.)	(min.)	(In./hr.)	(ft ³ /s)	ľ	(ft./s)	In.			(fi	t.)	(%)	(ft.)	(ft ³ /s)	(ft./s)	(ft./s)	%	(min.)
800	131	4.03	0.68	2.74	4.03	2.74	8.00	6.28	17.18	2.659	9.72	18	CL. IV RCP	0.013	436.13	433.87	2.94%	77	18.03	10.21	11.60	95.27%	0.13
810	133	1.83	0.42	0.77	1.83	0.77	5.00	7.07	5.44	0.705	4.43	15	CL. IV RCP	0.013	442.00	441.50	1.06%	47	6.67	5.44	6.06	81.49%	0.14
133	133b	0.58	0.81	0.47	2.41	1.24	5.14	7.07	8.75	0.149	2.79	24	CL. IV RCP	0.013	441.41	439.67	3.78%	46	44.08	14.04	10.95	19.86%	0.05



REVISION	DATE	REVISION	DATE	REVISION	DATE	APPLICANT:
						THE ELMS AT PSTA
						ATTN: KATHRYN KUBIT 1355 BEVERLY ROAD, SUITE
						MCLEAN, VA 22101
						PHONE: (703) 734-9730
						EMAIL: kkubit@elmstreetdev.c

	Proposed @ Ex 132											
DA	Area [sf]	Area [ac.]	lmpv. (%)	С								
1	76081	1.75	46%	0.58								
2	33084	0.76	89%	0.83								
3	24968	0.57	92%	0.85								
5	22212	0.51	47%	0.58								
6	19267	0.44	67%	0.70								
Total	175612	4.03		0.68								
	Pro	oposed @ 8	10									
4	79794	1.83	14%	0.38								
Total	79794	1.83										
	Existing @ 133											
133	25214	0.58	87%	0.82								
Total	25214	0.58										

LEGEND



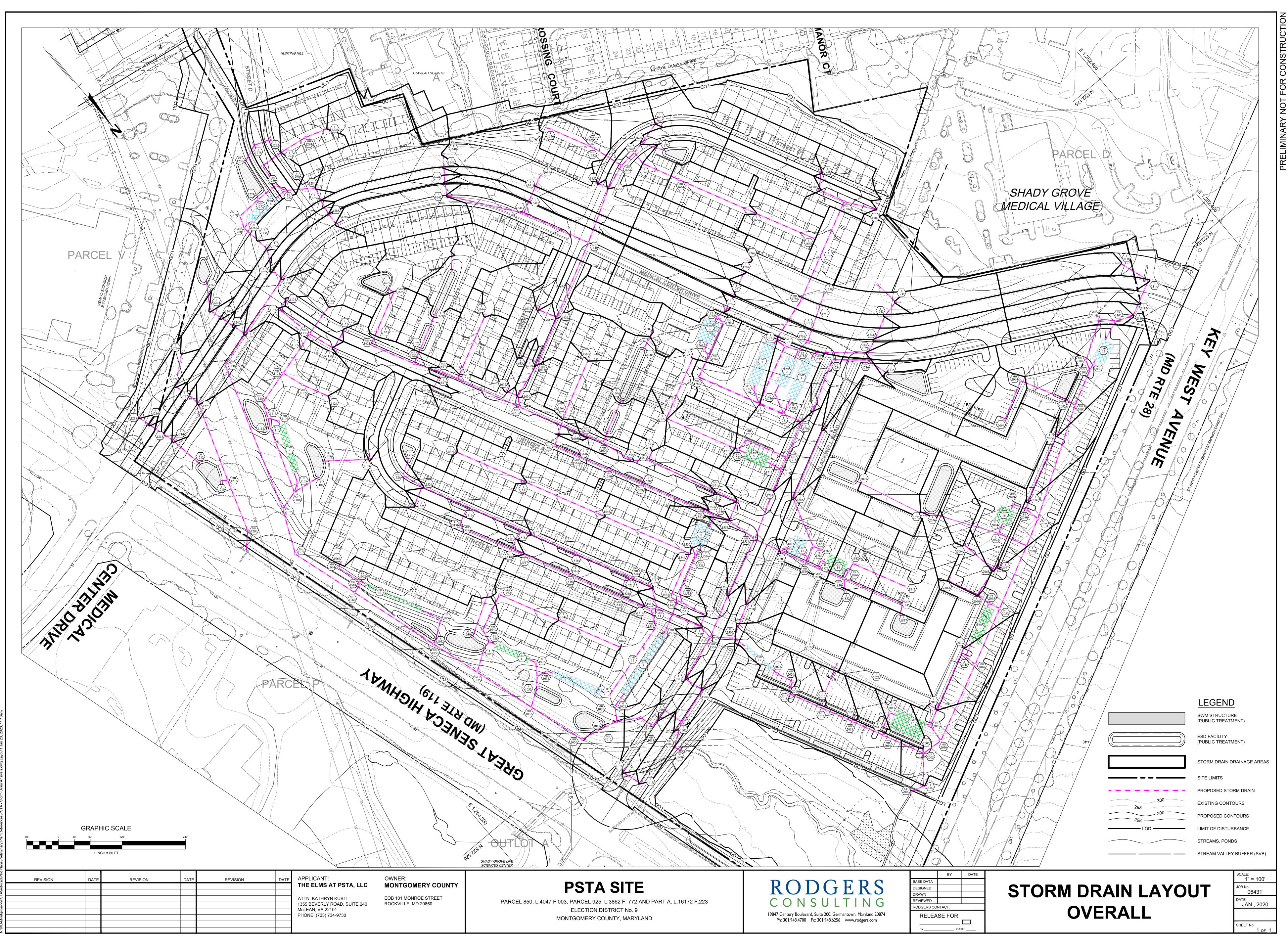
	BY	DATE
BASE DATA		
DESIGNED		
DRAWN		
REVIEWED		
RODGERS CO	NTACT:	
RELEA	SE FOR	

DRAIN TIE-IN PROPOSED CONDITION

OF MARL

PROFESSIONAL CERTIFICATION

LIMIT OF DISTURBANCE


PROPOSED CONTOURS

EXISTING CONTOURS

EXISTING GAS MAIN

PROPOSED PUBLIC STORM DRAIN

DRAINAGE AREA

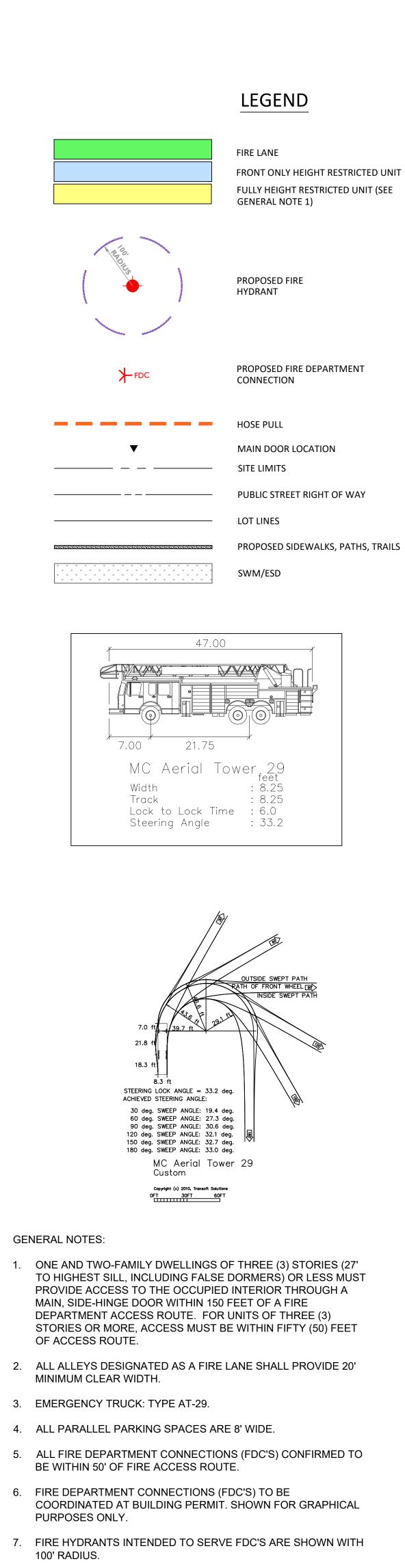
gomery\PSTA\autocad\Plot Plans\Preliminary Plan\References\PSTA - Storm Drain Analvsis.dwg Layout1 Jan 23, 2020, 11:16a

[EXTERNAL EMAIL] Exercise caution when opening attachments, clicking links, or responding.

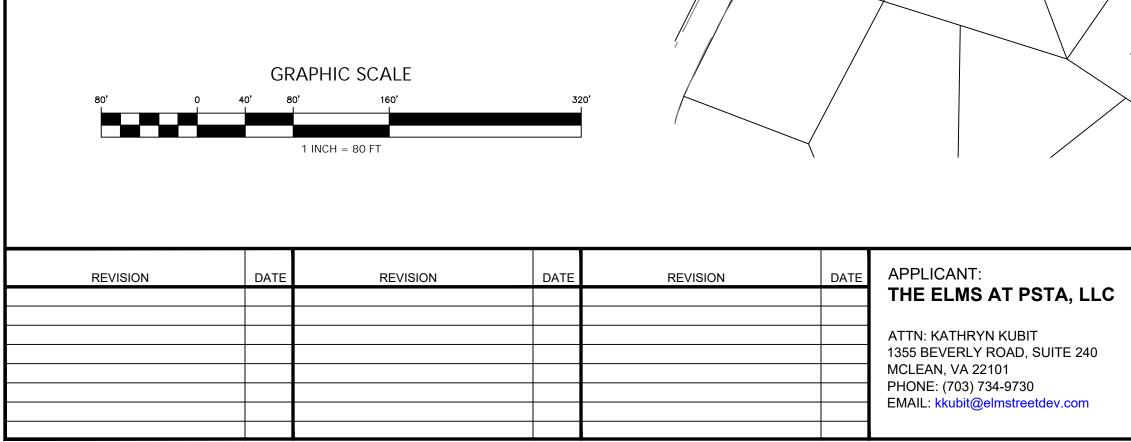
This is the fifth of five emails transmitting those documents the Applicant wishes to submit into the record for Preliminary Plan No. 120200100 - Item 7 on Planning Board Agenda of July 22, 2021.

Laura M. Tallerico

11 N. Washington Street | Suite 700 | Rockville, MD 20850-4229 D: +1 301.517.4833 | O: +1 301.762.1600 | F: +1 301.517.4833



in¥f For COVID-19 information and resources, please visit our Coronavirus Task Force page.


Confidentiality Notice: This e-mail, including any attachment(s), is intended for receipt and use by the intended addressee(s), and may contain confidential and privileged information. If you are not an intended recipient of this e-mail, you are hereby notified that any unauthorized use or distribution of this e-mail is strictly prohibited, and requested to delete this communication and its attachment(s) without making any copies thereof and to contact the sender of this e-mail inmediately. Nothing contained in the body and/or header of this e-mail is intended as a signature or intended to bind the addressor or any person represented by the addressor to the terms of any agreement that may be the subject of this e-mail or its attachment(s), except where such intent is expressly indicated.

Any federal tax advice provided in this communication is not intended or written by the author to be used, and cannot be used by the recipient, for the purpose of avoiding penalties which may be imposed on the recipient by the IRS. Please contact the author if you would like to receive written advice in a format which complies with IRS rules and may be relied upon to avoid penalties.

Secure Upload/Download files click here,

8. SEE STATEMENT OF PERFORMANCE BASED DESIGN FOR ADDITIONAL INFORMATION.

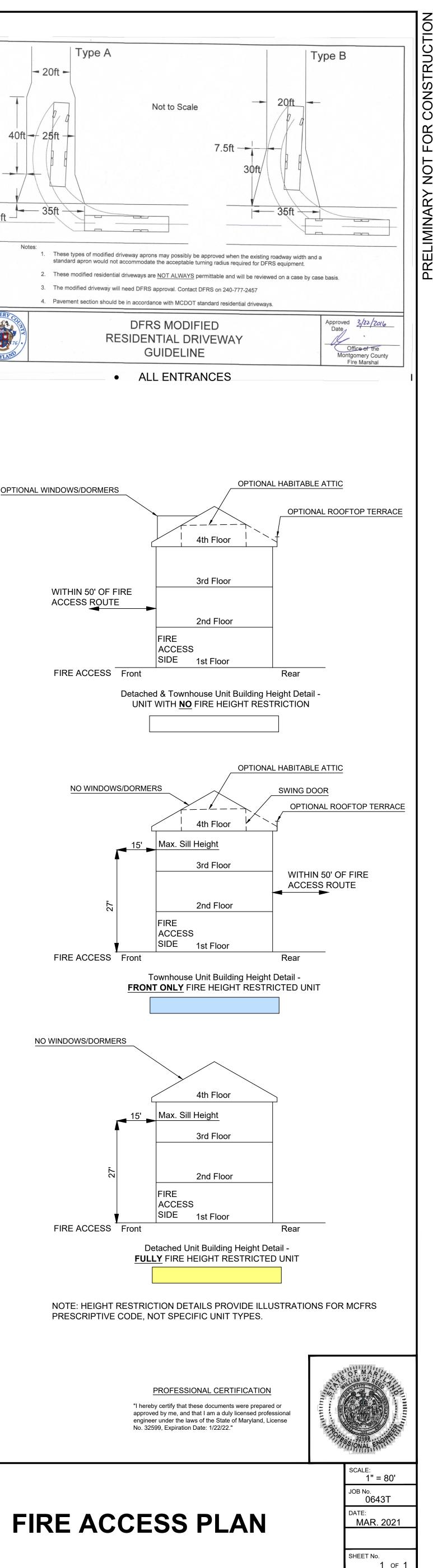
6

PINTO COURT

OWNER: MONTGOMERY COUNTY EOB 101 MONROE STREET ROCKVILLE, MD 20850

PARCEL 850, L.4047 F.003, PARCEL 925, L.3862 F. 772 AND PART A, L.16172 F.223 ELECTION DISTRICT No. 9 MONTGOMERY COUNTY, MARYLAND

	Image: standard approx would not accommodate the acceptable turning
24 BLACKWELL ROAD SPEED: 30NPH	 These modified residential driveways are <u>NOT ALWAYS</u> perm The modified driveway will need DFRS approval. Contact DFR Pavement section should be in accordance with MCDOT stand DFRS MODIFIE RESIDENTIAL DRIV GUIDELINE
GREAT SEINECA HIGHWAY ROAD SEEED: SO MPH ROAD SEEED: SO MPH ROAD SEEED: SO MPH ROAD SEEED: SO MPH	ALL ENTRAN
	NO WINDOWS/DORMERS
	Image: State of the state o
K 60 K 60 K 60 K 60 K 60 K 60 K 60 K 60	NO WINDOWS/DORMERS
	NOTE: HEIGHT RESTRICTION DETAILS PRESCRIPTIVE CODE, NOT SPECIFIC PROFESSIONAL "I hereby certify that these d approved by me, and that I a engineer under the laws of t No. 32599, Expiration Date:
BY DATE BASE DATA DESIGNED DRAWN DESIGNED DRAWN DESIGNED 19847 Century Boulevard, Suite 200, Germantown, Maryland 20874 RELEASE FOR	FIRE ACCESS P


RELEASE FOR

BY_____

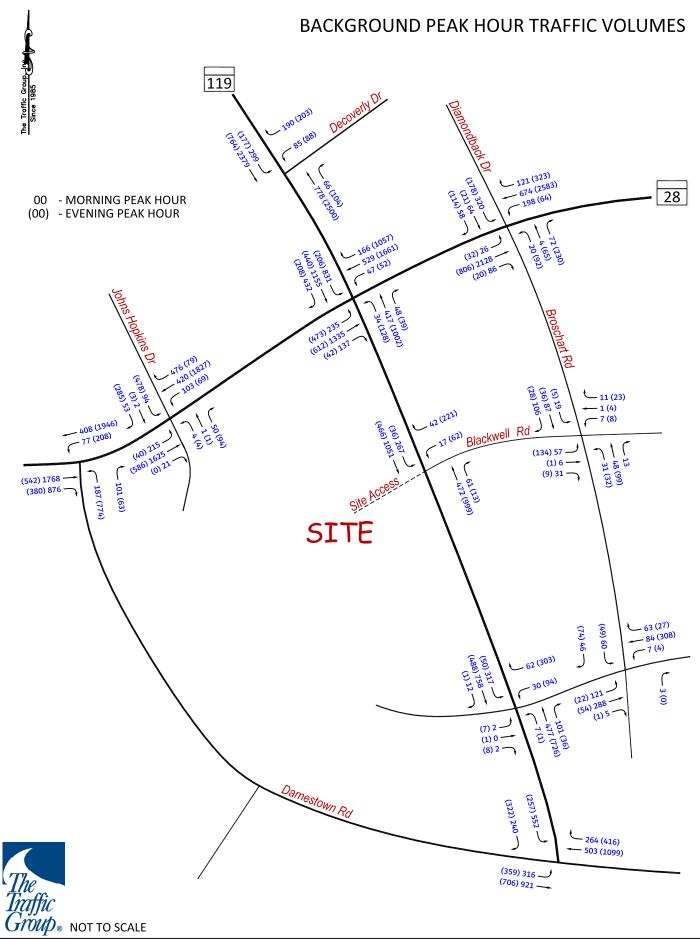
__ DATE ____

19847 Century Boulevard, Suite 200, Germantown, Maryland 20874 Ph: 301.948.4700 Fx: 301.948.6256 www.rodgers.com

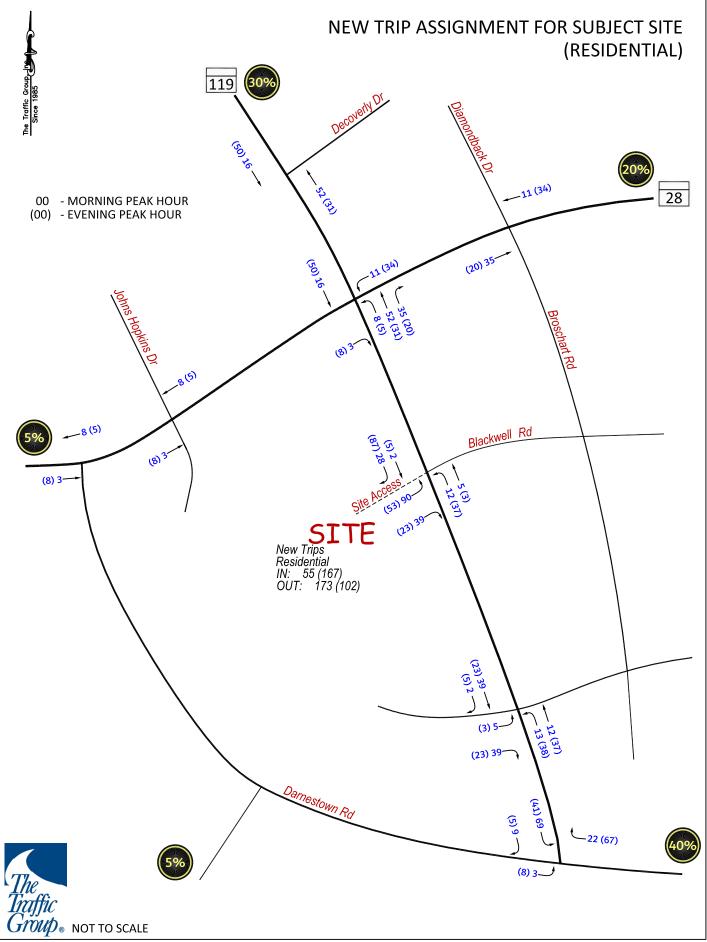
Memo

Impact of Not Having Access

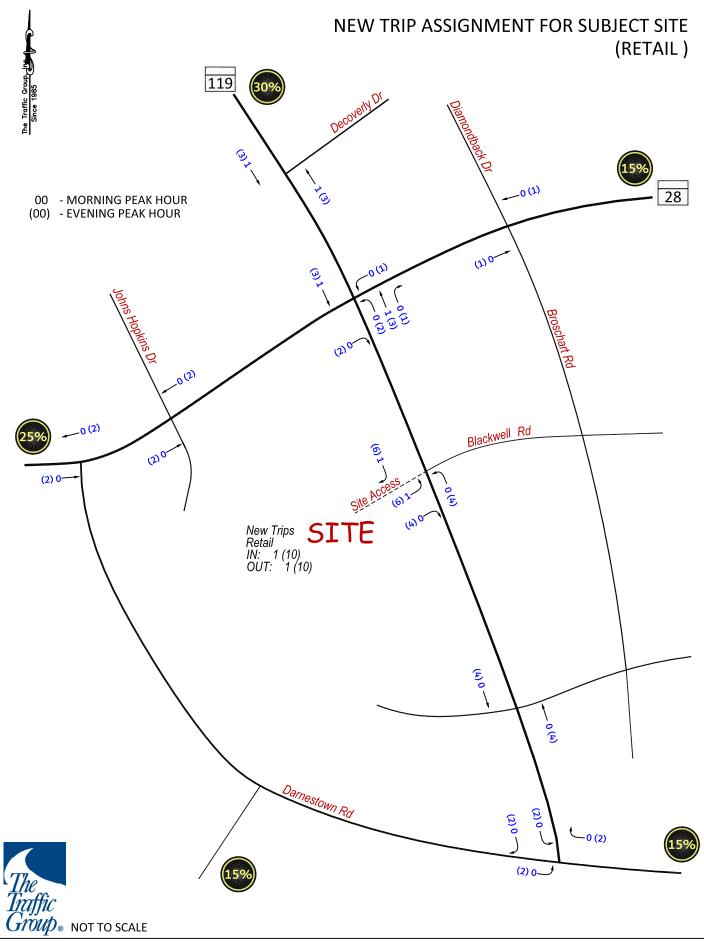
on Medical Center Dr

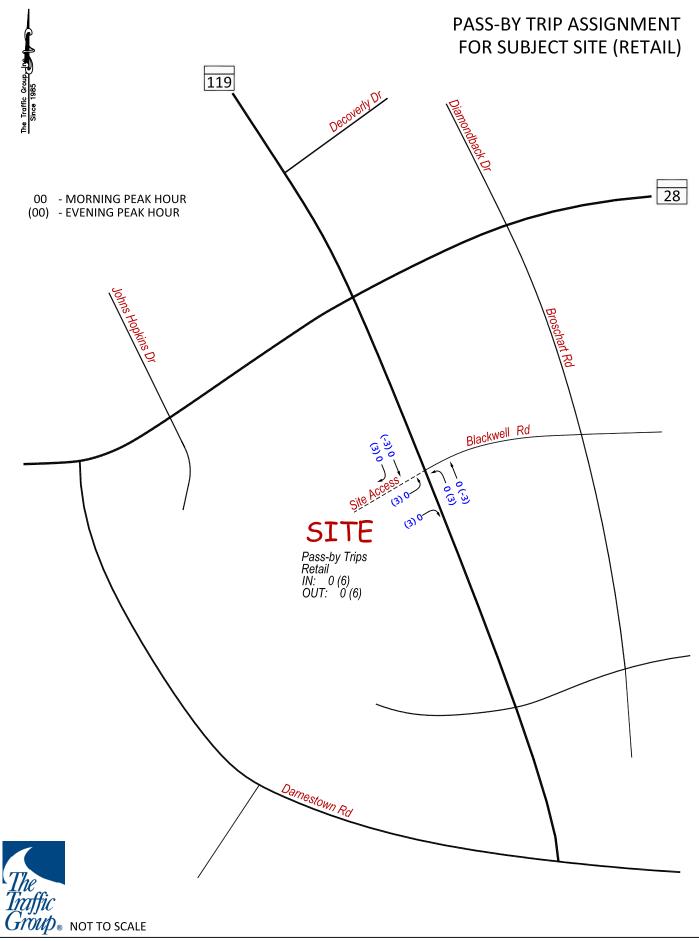

Results of Intersections Capacity Analysis (CLV)

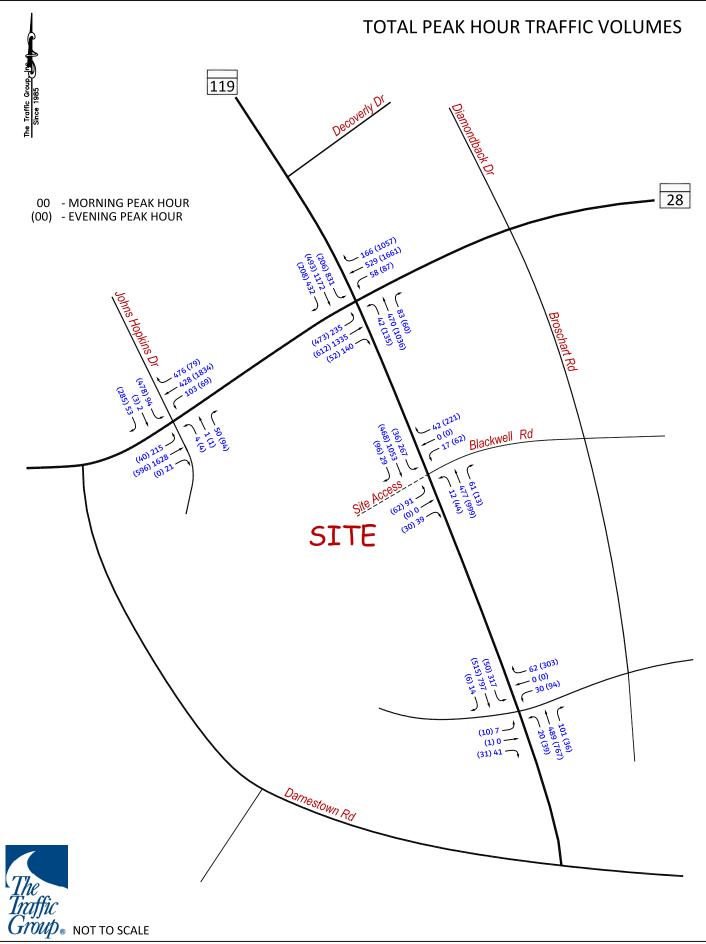
	Total Traffic (w/ Medical Ctr Dr Access)	Total Traffic (No Medical Ctr Dr Access)
Morning Peak Hour		
2. Key West Ave & Johns Hopkins Dr	824	813
4. Key West Ave & Great Seneca Hwy	1289	1293
With Improvement (3rd SB LTL)	1257	1267
5. Great Seneca Hwy & Blackwell Rd	675	693
6. Great Seneca Hwy & Medical Center Dr	681	708
Evening Peak Hour		
2. Key West Ave & Johns Hopkins Dr	1245	1251
4. Key West Ave & Great Seneca Hwy	1524	1524
With Improvement (3rd SB LTL)	1491	1491
5. Great Seneca Hwy & Blackwell Rd	807	819
6. Great Seneca Hwy & Medical Center Dr	739	739

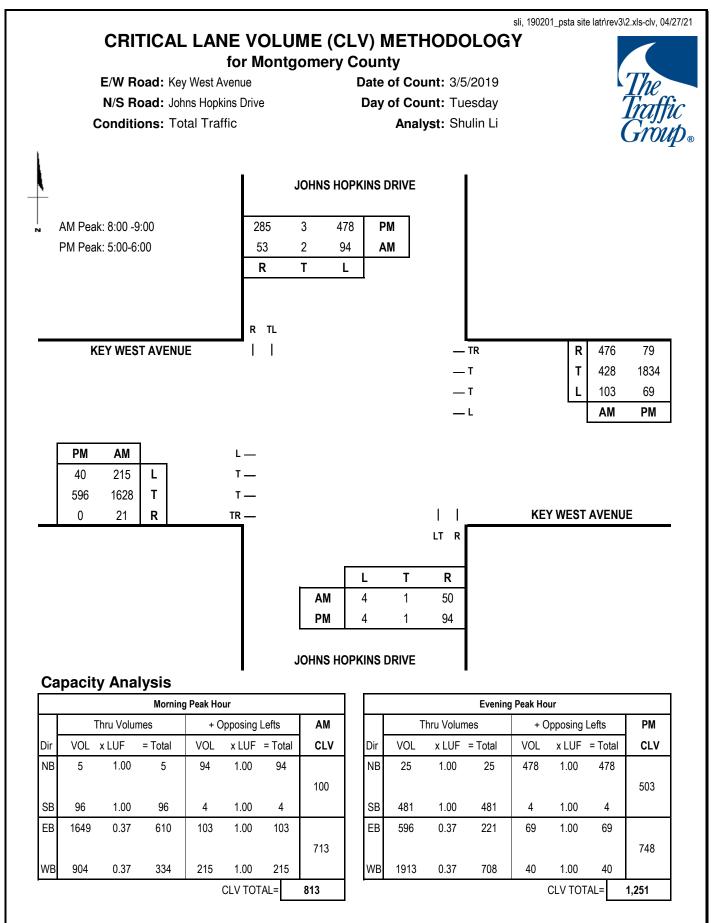

Results of Intersections Capacity Analysis (HCM)

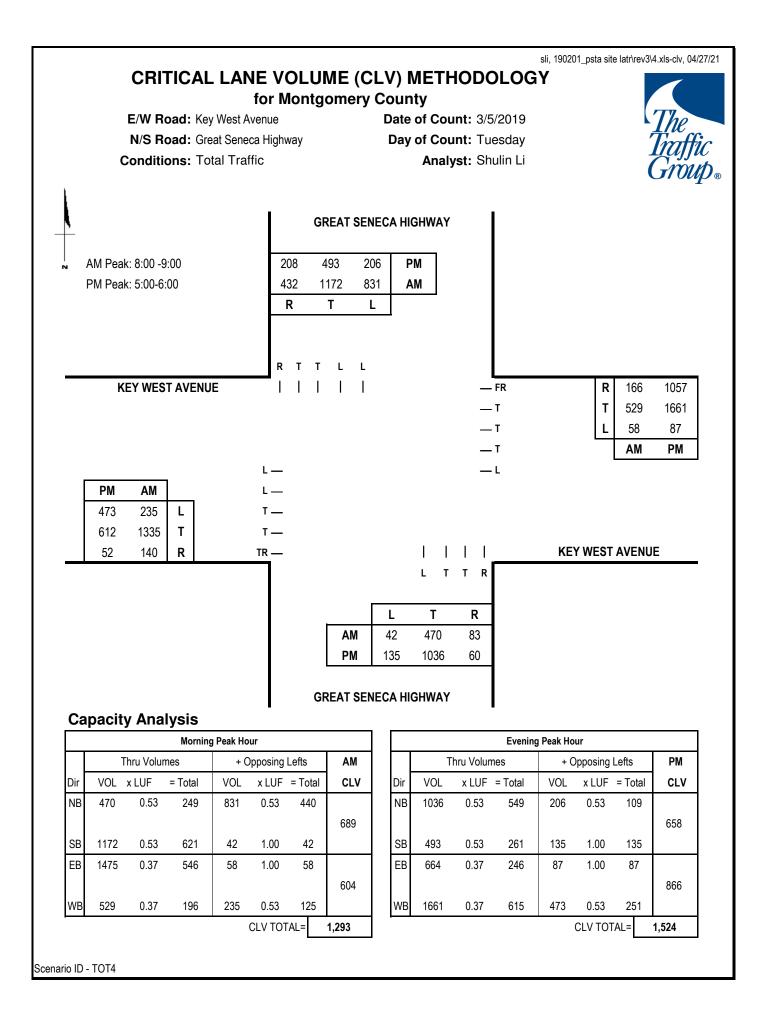
			Total Traffic (w/ Medical Ctr Dr Access)	Total Traffic (No Medical Ctr Dr Access)
Morning Peak Hour Traffic	Control Type	HCM Standard	Delay	(sec.)
2. Key West Ave & Johns Hopkins Dr	Stop Sign	55	357.3	332.4
With Improvement	Signal	55	5.9	5.5
4. Key West Ave & Great Seneca Hwy	Signal	55	44.9	45.5
With Improvement (SB 3rd LTL)	Signal	55	42.7	43.2
5. Great Seneca Hwy & Blackwell Rd	Stop Sign	55	43.6	62.2
With Improvement	Signal	55		29.3
6. Great Seneca Hwy & Medical Ctr Dr	Stop Sign	55	6.9	7.0
Evening Peak Hour Traffic	Control Type	HCM Standard	Delay	(sec.)
2. Key West Ave & Johns Hopkins Dr	Stop Sign	55	1218.6	1167.6
With Improvement	Signal	55	26.8	26.7
4. Key West Ave & Great Seneca Hwy	Signal	55	54.2	54.1
With Improvement (SB 3rd LTL)	Signal	55	46.0	46.1
5. Great Seneca Hwy & Blackwell Rd	Stop Sign	55	11.7	14.4
With Improvement	Signal	55		28.2
6. Great Seneca Hwy & Medical Ctr Dr	Stop Sign	55	11.0	10.9

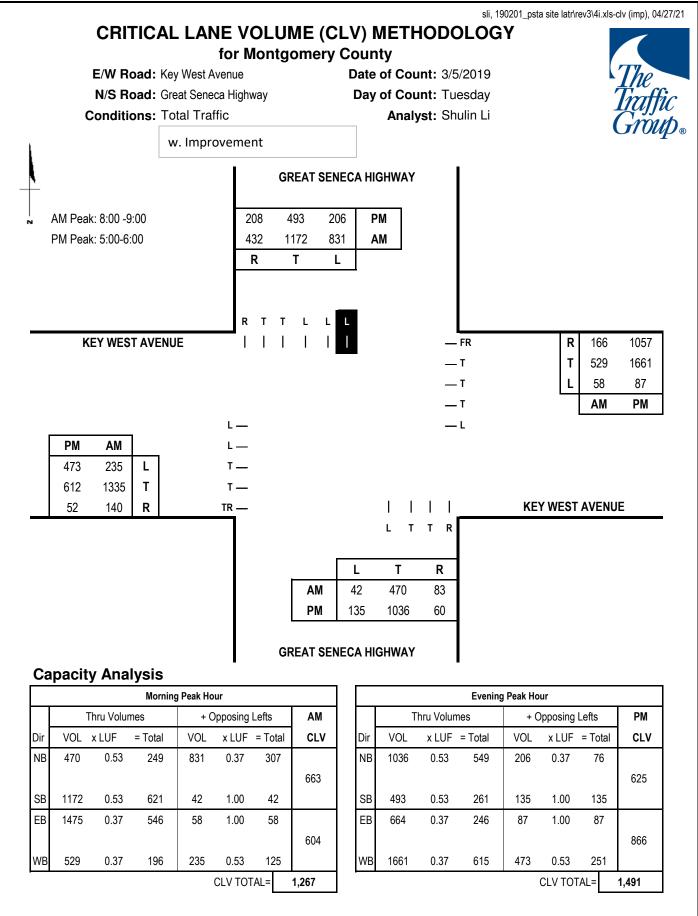

Note: 1. Results are based on HCM 6 Reports from HCS 7.

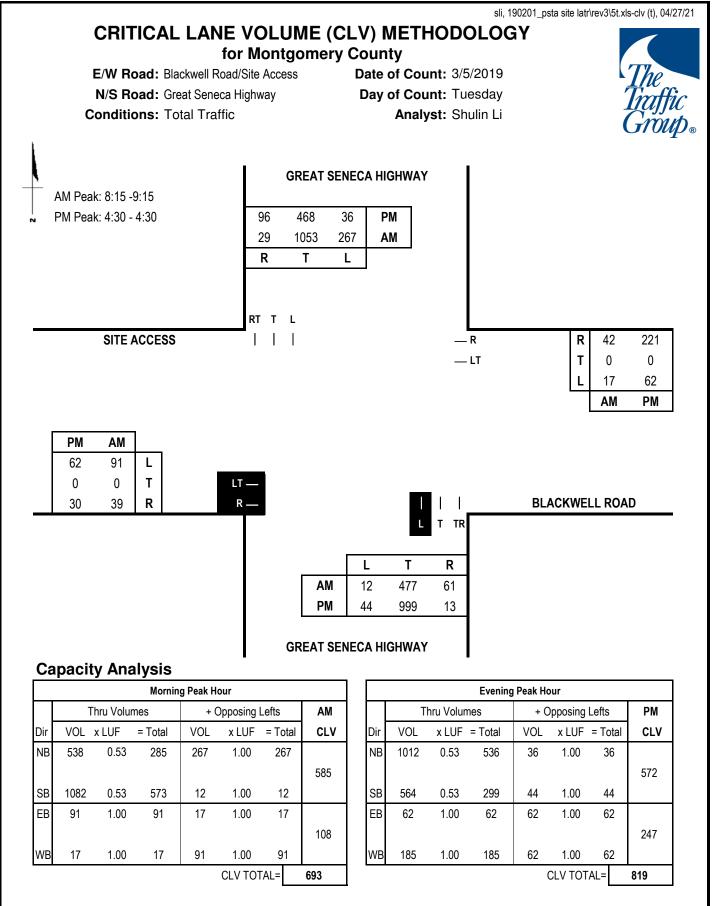

Sli, 190201\REV3\Eliminating MedCtrDr.dwg-OLD-BACK, F04/27/21

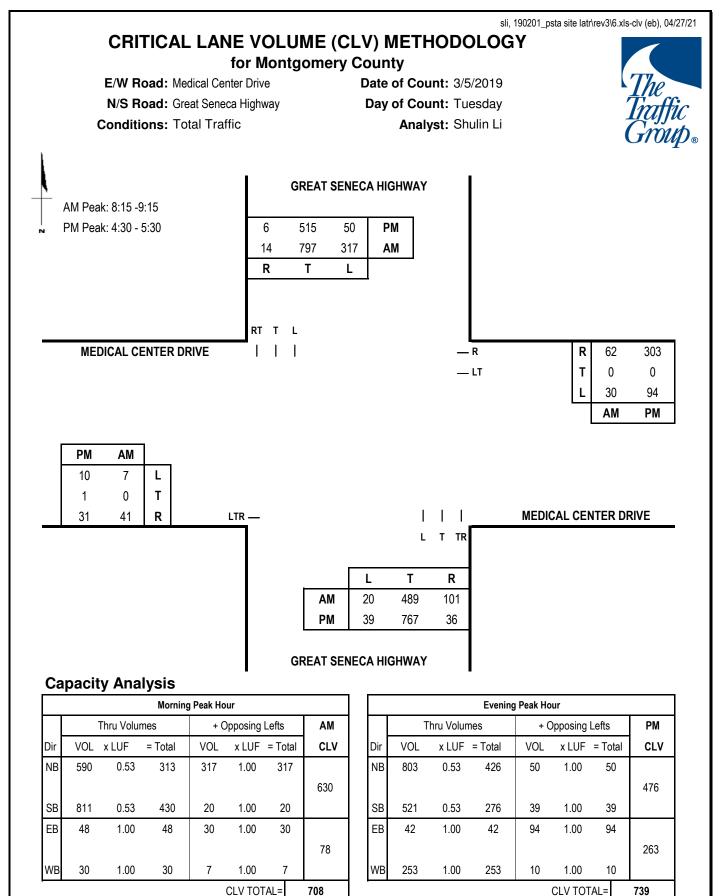

SLI, 190201\REV3\Eliminating MedCtrDr.dwg-STN1, F4/27/2021

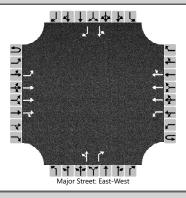

SLI, 190201\REV3\Eliminating MedCtrDr.dwg-STN2, F4/27/2021



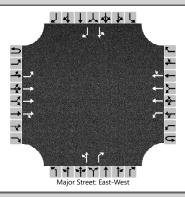

SLI, 190201\REV3\Eliminating MedCtrDr.dwg-STP, F4/27/2021




SLI, 190201\REV3\Eliminating MedCtrDr.dwg-TOT, F4/27/2021



CLV TOTAL= 739


	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	sli	Intersection	2. MD 28 & Johns Hopkins
Agency/Co.	TTG, Inc.	Jurisdiction	Montgomery, MD
Date Performed	11/1/2019	East/West Street	MD 28
Analysis Year	2019	North/South Street	Johns Hopkins Dr
Time Analyzed	Total AM	Peak Hour Factor	0.97
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	PSTA		
Lanes			

Vehicle Volumes and Adjustments

venicle volumes and Adj					1	14/				N. alla	la a se al		1	C	la a constal	
Approach			ound	_			bound				bound	_		1	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	3	0	0	1	3	0		0	1	1		0	1	1
Configuration		L	Т	TR		L	Т	TR		LT		R		LT		R
Volume (veh/h)	0	215	1628	21	0	103	428	476		4	1	50		94	2	53
Percent Heavy Vehicles (%)	3	3			3	3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (%)										(C				0	
Right Turn Channelized										Ν	lo			Ν	10	
Median Type Storage				Left +	- Thru								1			
Critical and Follow-up H	eadways															
Base Critical Headway (sec)		5.3				5.3				6.4	6.5	7.1		6.4	6.5	7.1
Critical Headway (sec)		5.36				5.36				6.46	6.56	7.16		6.46	6.56	7.16
Base Follow-Up Headway (sec)		3.1				3.1				3.8	4.0	3.9		3.8	4.0	3.9
Follow-Up Headway (sec)		3.13				3.13				3.83	4.03	3.93		3.83	4.03	3.93
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		222				106				5		52		99		55
Capacity, c (veh/h)		419				175						259				463
v/c Ratio		0.53				0.61						0.20				0.12
95% Queue Length, Q ₉₅ (veh)		3.0				3.3						0.7				0.4
Control Delay (s/veh)		22.8				52.9						22.3				13.8
Level of Service (LOS)		С				F						С				В
Approach Delay (s/veh)		2	.6			. 5	.4									
Approach LOS																

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	sli	Intersection	2. MD 28 & Johns Hopkins
Agency/Co.	TTG, Inc.	Jurisdiction	Montgomery, MD
Date Performed	11/1/2019	East/West Street	MD 28
Analysis Year	2019	North/South Street	Johns Hopkins Dr
Time Analyzed	Total PM	Peak Hour Factor	0.97
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	PSTA		
Lanes			

Vehicle Volumes and Adjustments

Approach	T	Eastb	ound			Worth	bound			North	bound			South	bound	
				-				-							1	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	3	0	0	1	3	0		0	1	1		0	1	1
Configuration		L	Т	TR		L	Т	TR		LT		R		LT		R
Volume (veh/h)	0	40	596	0	0	69	1834	79		4	1	94		478	3	285
Percent Heavy Vehicles (%)	3	3			3	3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (%)											0				0	
Right Turn Channelized										Ν	lo			Ν	10	
Median Type Storage				Left +	· Thru								1			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		5.3				5.3				6.4	6.5	7.1		6.4	6.5	7.1
Critical Headway (sec)		5.36				5.36				6.46	6.56	7.16		6.46	6.56	7.16
Base Follow-Up Headway (sec)		3.1				3.1				3.8	4.0	3.9		3.8	4.0	3.9
Follow-Up Headway (sec)		3.13				3.13				3.83	4.03	3.93		3.83	4.03	3.93
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		41				71				5		97		496		294
Capacity, c (veh/h)		128				595						585		27		210
v/c Ratio		0.32				0.12						0.17		18.55		1.40
95% Queue Length, Q ₉₅ (veh)		1.3				0.4						0.6		61.7		16.9
Control Delay (s/veh)		46.1				11.9						12.4		8179.3		247.9
Level of Service (LOS)		E				В						В		F		F
Approach Delay (s/veh)		2	.9			0	.4							52	28.3	
Approach LOS															F	

Copyright $\ensuremath{\mathbb{C}}$ 2021 University of Florida. All Rights Reserved.

		HCS	7 Sig	nalize	d Int	tersec	tion F	Resu	Its Su	mma	ſy				
	4!									- 4 ¹ 1	6				Ь.Т.
General Inform	nation										formatio		- É		+* ·*
Agency		TTG, Inc.							Duratio		0.250				R.
Analyst		QT				e Nov 4			Area Ty	ре	Other	•			→ +
Jurisdiction		Montgomery, MD		Time F		Total /	AM		PHF		0.97			w‡e 0	←
Urban Street		MD 28		Analys					Analysi	s Period	1> 7:	00	7		1 7
Intersection		2. MD 28 & Medica	Ctr Dr	File Na	ame	2TA-lı	mp.xus							17	
Project Descrip	tion	PSTA											Image: select of the selec		[*] ۱ ۴
Demand Inform	nation				EB			W	B		NB		1	SB	
Approach Move					T	R	1.1			1 1	T	R	1.1		R
Demand (v), v				215	1628	_	103				1		R L T 50 94 2 1 2 3 5 5 6 5 6 7 3T SBL 1 6 7 3T SBL 1 0 1 1 0 1 1 0 1 1 0 1 1		53
	011/11			210	1020	21	100				·	00	01	-	00
Signal Informa	ation							니지	24						I
Cycle, s	150.0	Reference Phase	2	1	P [*]	d¥ –	- 📑 F	201 - D	54Z				a		$\mathbf{\Phi}$
Offset, s	0	Reference Point	End	Green	A E	2.9	110.1			0.0		1	Y 2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Yellow		0.0	4.5	5.0				7	\rightarrow		KŤ Z
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.0	0.0	2.0	2.0				5	6	7	Y
					_									T	
Timer Results				EBL	-	EBT	WB		WBT	NE	BL	NBT	SBI	-	SBT
Assigned Phas	е			5		2	1	_	6	-		-			4
Case Number				1.1		4.0	1.1	_	4.0			7.0			7.0
Phase Duration				13.4	-	119.5	10.5		116.6	-		20.0			20.0
Change Period				6.0		6.5	6.0		6.5			7.0			7.0
Max Allow Hea	• •	,		4.1		0.0	4.1	_	0.0	-		4.3			4.3
Queue Clearan		, = ,		6.7			4.3					6.6			12.3
Green Extensio		(ge), s		0.8		0.0	0.3		0.0			0.7	1		0.7
Phase Call Pro				1.00			0.99	_				1.00			1.00
Max Out Proba	bility			0.00)		0.00)				0.00			0.00
Movement Gro	oup Res	sults			EB			WE	}		NB			SB	
Approach Move	-			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move				5	2	12	1	6	16	3	8		7	4	14
Adjusted Flow), veh/h		222	1136	564	106	441	_		5			99	55
-		ow Rate (<i>s</i>), veh/h/l	n	1767	1856		1767	185	_		1490				1572
Queue Service		. ,		4.7	0.0	0.7	2.3	0.5	_		0.0			-	4.9
		e Time (<i>g</i> _c), s		4.7	0.0	0.7	2.3	0.5	_		0.4				4.9
Green Ratio (g				0.78	0.75	0.75	0.76	0.73	_		0.09				0.09
Capacity (c), v				501	2795	_	311	272			172				136
Volume-to-Cap		atio (X)		0.443	0.406		0.341	0.16			0.030	0.378		0.582	0.401
· ·		/In (95 th percentile)		69.6	7	21	36.1	8.7			8.5				94.9
	. ,	eh/In (95 th percenti		2.7	0.3	0.8	1.4	0.3	_		0.3	3.5		7.0	3.7
	. ,	RQ) (95 th percent	,	0.21	0.00	0.00	0.11	0.00			0.00	0.59		0.00	0.32
Uniform Delay			,	5.8	0.0	0.2	4.4	0.4	_		62.7	64.7		67.3	64.8
Incremental De	· ,			0.5	0.4	0.8	0.6	0.1	_		0.1	1.7		3.1	1.9
Initial Queue D				0.0	0.0	0.0	0.0	0.0	_		0.0	0.0		0.0	0.0
Control Delay (• •	,		6.3	0.4	1.0	5.1	0.6			62.8	66.4		70.4	66.7
Level of Service				A	A	A	A	A	A		E	E		E	E
Approach Dela	. ,			1.2		A	0.8	L	A	66.		E	69.1		E
Intersection De				1.2			.5						A 00.		_
Multimodal Re	sults				EB			WE	3		NB			SB	
Pedestrian LOS	S Score	/LOS		2.04	-	В	2.28	3	В	3.2	3	С	3.13	3	С
Bicycle LOS So	core / LC	DS		1.54	-	В	1.06	3	А	0.5	8	А	0.74	1	А

Copyright © 2021 University of Florida, All Rights Reserved.

HCS[™] Streets Version 7.9.5

Signal Information Image: S			HCS	67 Sig	nalize	d Int	ersec	tion F	Resu	lts Sı	ımm	ary	7				
Agency TTG, Inc. Duration, h 0.250 Analysis QT Analysis Date Nov 4, 2019 Area Type Other Jurisdiction Mondgomery, MD Time Period Total PMw. PHF 0.97 Urban Street MD 28 Analysis Verz 2019 Analysis Period 1> 7:00 Intersection 2. MD 28 & Medical Ctr Dr File Name 2TP-Imp xus Protech Movement L T R	General Inform	nation								Interse	ction	Info	rmatic	on		┙╻╷	lu l <u>u</u>
Analysis OT Analysis Date Nov 4. 2019 Area Type Other Other Jurisdiction Montgomery, MD Time Period Total PM w. Improvement PHF 0.97 0.97 Urban Street MD 28 Analysis Year 2019 Analysis Period 1>7.00 Intersection PSTA PSTA Analysis Year 2019 Analysis Period 1>7.00 Demand Information PSTA EB VB NB SB Approach Movement L T R L T </td <td></td> <td></td> <td>TTG Inc</td> <td></td> <td>7 1</td> <td></td>			TTG Inc													7 1	
Jurisdiction Montgomery, MD Time Period Total PM w. Improvement PHF 0.97 Urban Street MD 28 Analysis Year 2019 Analysis Period 1>7.00 Intersection 2: MD 28 & Medical Ctr Dr File Name 2TP-Imp.xus T R L T					Analys	sis Date	e Nov 4	. 2019									× گ
Urban Street MD 28 Malysis Year 2019 Analysis Period 1>7.00 Intersection 2. MD 28 & Medical Ctr Dr Flie Name 2TP-Imp.xus >	-						Total I	PM w.	Ť						1 + + + + +	w ∱ E	
Intersection 2. MD 28 & Medical Ctr Dr File Name 2TP-Imp.xus NB SB Demand Information L T R L S R R L T R L<	Urban Street		MD 28		Analys	sis Yea		venient		Analys	s Peri	od	1> 7.0	00			
Project Description PSTA Demand Information L T R L T<				al Ctr Dr				mn vus		Analys	51 011	ou	1-1.		- 👢	11	
Approach Movement L T R <thl< th=""> <thl< th=""> <tht< th=""></tht<></thl<></thl<>		tion				anne	211-1	np.xu3							1 "	₩ ₩ Υ	Pr [
Approach Movement L T R <thl< th=""> <thl< th=""> <tht< th=""></tht<></thl<></thl<>	Demondulu fem					50			10/1	2			ND			0.0	
Demand (v), veh/h 40 596 0 69 1834 79 4 1 94 478 3 Signal Information Cycle, s 150.0 Reference Point End Incoordinated No Simuit. Gap E/W On Reference Point End Image: Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4">Colspan="4"Colspan=						-		<u> </u>							<u> </u>		
Signal Information Cycle, s 150.0 Reference Phase 2 Offset, s 0 Reference Point End Uncoordinated No Simult. Gap E/W On Force Mode Fixed Simult. Gap E/W On Force Mode Fixed Simult. Gap E/W On Force Mode Fixed Simult. Gap N/S On Timer Results EBL EBT WBL WBT NBL NBT SBL SB Assigned Phase 5 2 1 6 8 4 Case Number 1.1 4.0 1.1 4.0 7.0 700 Phase Duration, s 6.0 6.5 6.0 6.5 7.0 7.7 Max Allow Headway (MAH), s 4.1 0.0 4.1 0.0 4.2 4.4 Queue Clearance Time (g *), s 4.0 5.5 7.7 4.9 Green Extension Time (g *), s 0.1 0.0 0.0 0.7 4.9 Approach Movement						<u> </u>			_	_		L					R
Cycle, s 150.0 Reference Prine End Green 3.3 1.9 62.3 63.0 0.0<	Demand (v), v	/eh/h			40	596	0	69	183	84 / 7	9	4	1	94	478	3	285
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Signal Informa	ation					R 2			5	Т						L
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Cycle, s	150.0	Reference Phase	2]	P" "	4 8	74							A		小
$ \begin{array}{ l l l l l l l l $	Offset, s	0	Reference Point	End	Green	23	1 0	62.3		:11		<u> </u>		1		3	4
Force Mode Fixed Simuit. Gap N/S On Red 2.0 0.0 2.0 0.0 0.0 s s r Timer Results EBL EBL EBL WBL WBT NBL NBT SBL SBL A Assigned Phase 5 2 1 6.0 6.5 7.0	Uncoordinated	No	Simult. Gap E/W	On			-							X	\rightarrow		512
Assigned Phase 5 2 1 $\overline{6}$ $\overline{8}$ $\overline{1}$ $\overline{4}$ Case Number 1.1 4.0 1.1 4.0 1.1 4.0 $\overline{7.0}$	Force Mode	Fixed	Simult. Gap N/S	On										5	6	7	8
Assigned Phase 5 2 1 $\overline{6}$ $\overline{8}$ $\overline{1}$ $\overline{4}$ Case Number 1.1 4.0 1.1 4.0 1.1 4.0 $\overline{7.0}$							EDT	14/5		MOT				NET	0.54		0.D.T
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0				-			L			NBL	_		SBI	-	SBT
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<u> </u>	e				-			_		+-		+	-			7.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1.5									-		-				70.0
											-		_				7.0
Queue Clearance Time (g_s), s 4.0 \cdot 5.5 \cdot											-				<u> </u>		4.2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			·				0.0			0.0	-		+				49.3
Phase Call Probability0.82 $\cdot \cdot$ 0.95 $\cdot \cdot$ <t< td=""><td></td><td></td><td>, = ,</td><td></td><td></td><td></td><td>0.0</td><td></td><td></td><td>0.0</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>3.0</td></t<>			, = ,				0.0			0.0	-						3.0
Max Out Probability0.000.060.060.00 <th< td=""><td></td><td></td><td>(3,), -</td><td></td><td></td><td>2</td><td></td><td>· · ·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.00</td></th<>			(3,), -			2		· · ·									1.00
Approach MovementLTRLTRLTRLTRLTRLTRLTRLTRLTRAssigned Movement 5 2 12 12 1 6 16 3 8 18 7 4 4 4 4 6 16 16 3 6 18 7 4 4 4 4 6 16 16 3 6 18 7 4 4 4 4 6 16 16 16 3 6 18 7 4 4 4 6 16 16 16 3 6 16 18 6 16					0.00)		0.06	3					0.00			0.12
Approach MovementLTRLTRLTRLTRLTRLTRLTRLTRLTRAssigned Movement 5 2 12 12 1 6 16 3 8 18 7 4 4 4 4 6 16 16 3 6 18 7 4 4 4 4 6 16 16 3 6 18 7 4 4 4 4 6 16 16 16 3 6 18 7 4 4 4 6 16 16 16 3 6 16 18 6 16	Movement Gro	un Res	aults			FB			W/B				NB			SB	
Assigned Movement52121616381874Adjusted Flow Rate (v), veh/h4161407113236495974963Adjusted Saturation Flow Rate (s), veh/h/ln1767185618391767185618514771572140714071Queue Service Time (g s), s2.08.70.03.543.80.05.747.14Cycle Queue Clearance Time (g c), s2.08.70.03.543.80.25.747.34Green Ratio (g/C)0.440.420.410.450.430.420.420.430.420.420.430.420.420.430.420.420.430.420.420.430.420.420.430.420.420.430.420.420.430.420.420.430.420.420.420.430.420.420.420.430.420.420.420.430.40.420.430.440.420.410.450.430.42 <td></td> <td>-</td> <td></td> <td></td> <td>1</td> <td></td> <td>R</td> <td>1</td> <td>-</td> <td>1</td> <td></td> <td>Т</td> <td></td> <td>R</td> <td>1</td> <td></td> <td>R</td>		-			1		R	1	-	1		Т		R	1		R
Adjusted Flow Rate (v), veh/h 41 614 0 71 1323 649 5 97 496 7 Adjusted Saturation Flow Rate (s), veh/h/ln 1767 1856 1839 1767 1856 649 1417 1572 1407 1 Queue Service Time (g s), s 2.0 8.7 0.0 3.5 43.8 0.0 5.7 47.1 7 Cycle Queue Clearance Time (g c), s 2.0 8.7 0.0 3.5 43.8 0.0 5.7 47.3 7 Green Ratio (g/C) 0.44 0.42 0.41 0.45 0.43 0.4 0.42 0.41 0.45 0.43 0.4 0.42 0.41 0.45 0.43 0.4 0.42 0.41 0.45 0.43 0.4 0.42 0.41 0.45 0.43 0.4 0.42 0.42 0.43 0.43 0.44 0.42 0.43 0.43 0.44 0.42 0.44 0.45 0.43 0.44 0.42 0.42 0.43 0.44 0.42 0.42 0.42 0.42 0.42 0.42					5						3	-			7		14
Adjusted Saturation Flow Rate (s), veh/h/ln1767185618391767185611477157214071Queue Service Time (g s), s2.08.70.03.543.800.05.747.1 <td></td> <td></td> <td>), veh/h</td> <td></td> <td></td> <td>-</td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td></td> <td></td> <td>-</td> <td></td> <td>253</td>), veh/h			-	+					+			-		253
Queue Service Time (g_s) , s2.08.70.03.543.800.05.747.147.1Cycle Queue Clearance Time (g_c) , s2.08.70.03.543.800.25.747.3		· ·	<i>7</i> .	′ln		-				_	+	+	-				1572
Cycle Queue Clearance Time (g c), s 2.0 8.7 0.0 3.5 43.8 0 0.2 5.7 47.3	-												-				16.6
Green Ratio (g/C) 0.44 0.42 0.41 0.45 0.43 0 0.42 0.42 0.43 0.42<			· /·			<u> </u>						\rightarrow					16.6
Capacity (c), veh/h 113 2310 396 1587 664 660 639 639 Volume-to-Capacity Ratio (X) 0.365 0.266 0.000 0.180 0.834 0 0.008 0.147 0.776 0 Back of Queue (Q), tr/ln (95 th percentile) 41.9 168.1 0 67.8 641.8 5.2 105.2 629.2 2 Back of Queue (Q), veh/ln (95 th percentile) 1.6 6.6 0.00 2.6 25.1 0 0.2 4.1 24.6 2 Queue Storage Ratio (RQ) (95 th percentile) 0.13 0.00 0.00 0.21 0.00 0 0.00 0.70 0.00 0.00 0.70 0.00 0.00 0.00 0.00 0.00 0.21 0.00 0.02 4.1 0.24.6 0.00					0.44	0.42	0.41	0.45	0.43	1			0.42	0.42		0.42	0.42
Volume-to-Capacity Ratio (X) 0.365 0.266 0.000 0.180 0.834 0 0.008 0.147 0 0.776 0 Back of Queue (Q), ft/ln (95 th percentile) 41.9 168.1 0 67.8 641.8 0 5.2 105.2 629.2 2 Back of Queue (Q), veh/ln (95 th percentile) 1.6 6.6 0.00 2.6 25.1 0 0.2 4.1 24.6 2 Queue Storage Ratio (RQ) (95 th percentile) 0.13 0.00 0.00 0.21 0.00 0 0.70 0.00 0.00 0.70 0.00 0.00 0.70 0.00 0.00 0.70 0.00 0.00 0.70 0.00 0.00 0.70 0.00 0.00 0.70 0.00 0.00 0.70 0.00 0.00 0.70 0.00 0.00 0.70 0.00 <						-				_		\rightarrow				-	660
Back of Queue (Q), veh/ln (95 th percentile) 1.6 6.6 0.0 2.6 25.1 0.0 0.2 4.1 24.6 24.6 Queue Storage Ratio (RQ) (95 th percentile) 0.13 0.00 0.00 0.21 0.00			itio(X)		0.365	0.266	0.000	0.180	0.834	1			0.008	0.147		0.776	0.382
Queue Storage Ratio (RQ) (95 th percentile) 0.13 0.00 0.00 0.21 0.00 0 0.00 0.70 0.00 0.00 0	Back of Queue	(Q), ft/	In (95 th percentile)	41.9	168.1	0	67.8	641.8	3			5.2	105.2		629.2	280.4
	Back of Queue	(Q), ve	eh/In (95 th percent	tile)	1.6	6.6	0.0	2.6	25.1				0.2	4.1		24.6	11.0
Uniform Delay (d t) s/yeb 32.5 21.5 23.9 27.9 25.3 26.9 39.0 3	Queue Storage	Ratio (RQ) (95 th percen	ıtile)	0.13	0.00	0.00	0.21	0.00				0.00	0.70		0.00	0.93
	Uniform Delay	(d 1), s	/veh		32.5	21.5		23.9	27.9				25.3	26.9		39.0	30.1
Incremental Delay (d 2), s/veh 1.9 0.3 0.0 0.2 5.3 0.0 0.5 9.0	Incremental De	lay (<i>d</i> 2), s/veh		1.9	0.3	0.0	0.2	5.3				0.0	0.5		9.0	1.7
		• •	,			<u> </u>	0.0										0.0
		,	eh							_							31.7
Level of Service (LOS) C C C A C C D		· /									-		С				C
					22.6	3			3	С	-	27.3				5	D
Intersection Delay, s/veh / LOS 26.7 C	Intersection De	iay, s/ve	en / LOS				26	ö.7							Ċ		
Multimodal Results EB WB NB SB	Multimodal Re	sults				EB			WB				NB			SB	
			/LOS		2.04	11	В	2.03	1			3.37	T	С	3.22		С
											_						В

Copyright © 2021 University of Florida, All Rights Reserved.

		HCS	7 Sig	nalize	ed Int	ersec	tion R	Resu	Its Su	mmar	у			2 3 4 6 7 SBL SB					
General Inform	ation								Intersec				_						
Agency		TTG, Inc.							Duration		0.250		_*	* • • •	*				
Analyst		QT				e Nov 4	, 2019		Area Typ	be	Other	-	××		≮_ ▲ ← ⊱				
Jurisdiction		Montgomery, MD		Time F	Period	Total A	۹M		PHF		0.96			w‡e 0	⇔ ↓ ↓				
Urban Street		MD 28		Analys	sis Yea	r 2019			Analysis	Period	1> 7:0	00	₹ <mark>-</mark> *		<mark>بہ</mark> ج				
Intersection		4. MD 28 & MD 119)	File Na	ame	4TA.x	us							'					
Project Descript	ion	PSTA											ľ	4 1 4 Y	[†] ₹ [₹]				
				_					-										
Demand Inform					EB		<u> </u>	W	1	<u> </u>	NB			-					
Approach Move				L	T	R	L	T		L	Т	R	_	-	R				
Demand (v), ve	eh/h			235	1335	5 140	58	52	9 166	42	470	83	831	1172	432				
Signal Informat	tion								5 21										
	150.0	Reference Phase	2	1		der -	- L *	٩.	3 1643					5	4				
Offset, s	0	Reference Point	End	·		Ē.	<u>-</u>		<u>\</u>		<u> 17</u>	1	Y 2	3	4				
Uncoordinated	No	Simult. Gap E/W	On	Green		0.5	49.2	4.8			3		4	ιI	^ -				
Force Mode	Fixed	Simult. Gap N/S	On	Yellow Red	2.0	4.0	4.5 2.0	4.0		5.0		5	6						
	. iXeu		On	1.00	12.0	2.0	2.0		0.0	2.0		-							
Timer Results	se n, s d, (Y+ <i>R</i> c), s adway (<i>MAH</i>), s nce Time (g s), s			EBI	_	EBT	WB	L	WBT	NB	L	NBT	SBI	_	SBT				
Assigned Phase	;			5		2	1		6	3		8	7		4				
Case Number				2.0		4.0	2.0	+	3.0	2.0		3.0	2.0		3.0				
Phase Duration,	S			19.1		62.2	12.6		55.7	10.8		33.9	41.4		64.4				
		c).s		6.0		6.5	6.0		6.5	6.0		7.0	0.0		7.0				
-				4.1		0.0	4.1	-	0.0	4.0		3.9	4.0		3.9				
		·		12.5	5	0.0	7.1	-	0.0	5.7		21.4	38.6		49.0				
Green Extension		, = ,		0.6		0.0	0.1		0.0	0.1		5.5	2.7		6.8				
Phase Call Prob		(90),0		1.00		0.0	0.92	, –	0.0	0.84	1	1.00	1.00		1.00				
Max Out Probab	-		_	0.05			0.01			0.00		0.74	0.24		0.61				
	, .)			0.00			0.0			0.00			0.12						
Movement Gro	up Res	ults			EB			WE	5		NB			SB					
Approach Move	ment			L	Т	R	L	Т	R	L	Т	R	L	Т	R				
Assigned Mover	nent			5	2	12	1	6	16	3	8	18	7	4	14				
Adjusted Flow R	Rate (<i>v</i>), veh/h		245	1042	495	60	551	173	44	490	86	866	1221	325				
Adjusted Satura	tion Flo	ow Rate (<i>s</i>), veh/h/l	n	1716	1856	1762	1767	168	5	1767	1766	1572	1716	1766	1572				
Queue Service	Time (g	gs), s		10.5	34.0	34.9	5.1	10.8	3	3.7	19.4	7.2	36.6	47.0	24.1				
Cycle Queue Cl	earance	e Time (<i>g c</i>), s		10.5	34.0	34.9	5.1	10.8	3	3.7	19.4	7.2	36.6	47.0	24.1				
Green Ratio (g/	′C)			0.09	0.37	0.37	0.04	0.33	3	0.03	0.18	0.18	0.28	0.38	0.38				
Capacity (c), ve	eh/h			300	1378	654	77	165	7	57	633	282	946	1353	602				
Volume-to-Capa		· · ·		0.817	0.756	0.756	0.781	0.33	3	0.772	0.773	0.307	0.915	0.902	0.540				
Back of Queue ((Q), ft/	(In (95 th percentile))	209.6	521.5	545.3	120.5	195.	2	89.7	338	130.4	598.2	666.2	360.2				
Back of Queue ((Q), ve	eh/In (95 th percenti	ile)	8.2	20.4	21.3	4.7	7.6		3.5	13.2	5.1	23.4	26.0	14.1				
Queue Storage	Ratio (RQ) (95 th percent	tile)	0.84	0.00	0.00	0.40	0.00)	0.36	0.00	0.52	1.33	0.00	0.90				
Uniform Delay (d 1), s/	/veh		67.3	32.4	35.0	71.0	31.4		72.0	54.2	53.5	52.6	34.2	36.0				
Incremental Dela	ay (d 2), s/veh		5.4	3.5	7.1	15.4	0.5		19.5	4.9	0.6	10.7	8.1	0.8				
Initial Queue De	lay (d	з), s/veh		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0				
Control Delay (d), s/ve	eh		72.7	35.9	42.1	86.4	32.0	0.0	91.5	59.1	54.1	63.3	42.3	36.8				
Level of Service	(LOS)			E	D	D	F	С	Α	F	E	D	Е						
Approach Delay	, s/veh	/LOS		42.7	7	D	29.1		С	60.7	7	E	49.1		D				
Intersection Dela						48	5.5						D						
Multimodal Res	Results				EB			WE			NB			SB					
Pedestrian LOS				3.04		С	3.45		С	3.33	_	С	3.27	_	С				
Bicycle LOS Sco	ore / LC	DS		1.47		Α	0.92	2	Α	1.00)	A	2.48	3	В				

Copyright © 2021 University of Florida, All Rights Reserved.

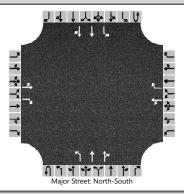
HCS[™] Streets Version 7.9.5

	HCS	7 Sig	nalize	d Int	ersec	tion F	Resu	lts Sur	nmar	у				
Conoral Information								Intersec	tion Inf	ormatic		T D	444	ba la
General Information										1			<u>n t t r r</u>	
	TTG, Inc.		Analys	in Dat	Nov 4	2010		Duration		0.250				بر الا
			-		e Nov 4			Area Typ	e	Other			N w1r	
	Montgomery, MD		Time F			vement		PHF		0.96		4 + +		
	MD 28		Analys	sis Yea				Analysis	Period	1> 7:0	00		5.117	
	I. MD 28 & MD 119)	File Na	ame	4TA-Ir	mp.xus						1	* 1 ****	יין דין די
Project Description F	PSTA													
Demand Information				EB			WE	3		NB			SB	
Approach Movement			L	Т	R	L	Т	R	L	Т	R	L	R	
Demand (v), veh/h			235	1335		58	52		42	470	83	831	T 1172	432
Signal Information		1		7	7			5 213	1 21		_		K	
	Reference Phase	2		۳ e	TŘ –				- I -	tz 📕		$\mathbf{\nabla}_{2}$		x †
	Reference Point	End	Green	6.6	0.7	56.0	4.8	19.2	2 37.2	2	Image: Image			
	Simult. Gap E/W	On	Yellow	4.0	0.0	4.5	4.0	0.0	5.0		↗			\mathbf{r}
Force Mode Fixed	Simult. Gap N/S	On	Red	2.0	0.0	2.0	2.0	0.0	2.0	_	5	6	7	8
The Deck		_	EDI		EDT			MOT	ND		NDT	0.01	_	ODT
Timer Results	/ (<i>MAH</i>), s		EBL	-	EBT	WB		WBT	NBI	-			-	SBT
Assigned Phase Case Number			5 2.0	+	2 4.0	1 2.0		6 3.0	3 2.0					4 3.0
Phase Duration, s			13.3		63.2	12.6		62.5	10.8					63.4
Change Period, (Y+R c)) s		0.0		6.5	6.0		6.5	6.0					7.0
Max Allow Headway (MA			4.1		0.0	4.1		0.0	4.0					3.9
Queue Clearance Time (·		12.5	;	0.0	7.1		0.0	5.7					49.9
Green Extension Time (, = ,		0.8		0.0	0.1		0.0	0.1					6.4
Phase Call Probability	y , y		1.00		0.0	0.92		0.0	0.84					1.00
Max Out Probability			0.00			0.00			0.00					0.65
Movement Group Resu	ilts			EB			WB			NB			SB	
Approach Movement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Movement			5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow Rate (v),	, veh/h		245	1042	495	60	551	173	44	490		866	1221	325
Adjusted Saturation Flow	v Rate (<i>s</i>), veh/h/l	n	1716	1856	1762	1767	1685	5	1767	1766	1572	1716	1766	1572
Queue Service Time (g	s), S		10.5	33.4	34.4	5.1	9.6	1	3.7	17.1	6.6	24.2	47.9	24.4
Cycle Queue Clearance	Time (<i>g c</i>), s		10.5	33.4	34.4	5.1	9.6		3.7	17.1	6.6	24.2	47.9	24.4
Green Ratio (g/C)			0.09	0.38	0.38	0.04	0.37		0.03	0.25	0.25	0.20	0.38	0.38
Capacity (c), veh/h			304	1404	666	77	1887	'	57	875	390	1031	1328	591
Volume-to-Capacity Ration	X <i>Y</i>		0.804	0.742	0.742	0.780	0.292	2	0.772	0.559	0.222	0.840	0.919	0.550
Back of Queue (Q), ft/In			207.8	509.5	534	120.4	172.3	3	89.7	288.2	117.5	403.8	687	364.4
Back of Queue (Q), veh	, .		8.1	19.9	20.9	4.7	6.7		3.5	11.3			26.8	14.2
Queue Storage Ratio (R	,, .	tile)	0.83	0.00	0.00	0.40	0.00		0.36	0.00			0.00	0.91
Uniform Delay (<i>d</i> 1), s/v			67.1	31.4	34.0	71.0	26.0	_	72.0	43.5			35.3	36.8
Incremental Delay (d 2),			4.4	3.2	6.6	15.3	0.4		19.5	0.6			9.6	0.9
Initial Queue Delay (<i>d</i> 3	,		0.0	0.0	0.0	0.0	0.0		0.0	0.0			0.0	0.0
Control Delay (d), s/veh	1		71.5	34.6	40.6	86.3	26.4	_	91.5	44.1			44.9	37.7
Level of Service (LOS)	108		E	C		F	C	A	F					D
	oach Delay, s/veh / LOS section Delay, s/veh / LOS		41.3		D	25.2 3.2	-	С	47.6	,		49.3 D	,	D
					4.									
Multimodal Results				EB			WB			NB			SB	
Pedestrian LOS Score /	LOS		3.04		С	3.53	3	D	3.33	3	С	3.27	7	С
Bicycle LOS Score / LOS	3		1.47	,	А	0.92	2	А	1.00)	А	2.48	3	В

Copyright © 2021 University of Florida, All Rights Reserved.

		HCS	7 Sig	nalize	ed Int	ersec	tion F	Resu	lts Sur	nmar	У					
General Inform	nation								Intersec		1					
Agency		TTG, Inc.				_			Duration		0.250					
Analyst		QT				e Nov 4			Area Typ	е	Other	•	^		▲ ▲	
Jurisdiction		Montgomery, MD		Time F		Total	PM		PHF		0.95		$\Rightarrow \rightarrow$	w Î ∈ 0	÷ + +	
Urban Street		MD 28		Analys	sis Yea	r 2019			Analysis	Period	1> 7:(00	₹			
Intersection		4. MD 28 & MD 119)	File Na	ame	4TP.x	us							JII		
Project Descrip	otion	PSTA											ĥ	Image: Signature series of the series of		
Domond Inform								\\\/	<u>ר</u>					00		
Demand Inform				L	EB T	R		WI T			NB T	R			R	
Demand (v), v				473	612	52	87	166		_	1036	_	_	-	208	
Demand (V), V	/en/n			473	012	52	07	100	01 1057	135	1030	00	200	493	208	
Signal Informa	ation									21					1	
Cycle, s	150.0	Reference Phase	2	1	P 10	⊢⊒	_ ⊢ ^	Π .	- R/		• 21 ⊻		→	5	4	
Offset, s	0	Reference Point	End								<u>17</u>	1	2	3	4	
Uncoordinated		Simult. Gap E/W	On	Green Yellow		0.5	55.5 4.5	11. 0.0		39.0 5.0)	7	4		^ =	
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.0	2.0	2.0	0.0		2.0	_	5	6	7	8	
					-											
Timer Results				EBI	-	EBT	WB	L	WBT	NBI	-	NBT	SBI	-	SBT	
Assigned Phas	e			5		2	1		6	3		8	7		4	
Case Number				2.0		4.0	2.0		3.0	2.0		3.0	2.0		3.0	
Phase Duration	า, s			22.0)	68.4	15.6	3	62.0	20.0)	54.1	11.9)	46.0	
Change Period	, (Y+ R	c), S		6.0		6.5	6.0		6.5	6.0		7.0	0.0		7.0	
Max Allow Hea	dway (/	MAH), s		4.1		0.0	4.1		0.0	4.0		3.9	4.0	3.9		
Queue Clearar	nce Time	e (gs), s		18.1			9.7			13.9)	47.8	11.3	20.0		
Green Extensio	on Time	(ge), s		0.0		0.0	0.1		0.0	0.1		0.0	0.6	8.2		
Phase Call Pro	bability			1.00)		0.98	3		1.00)	1.00	1.00)	1.00	
Max Out Proba	bility			1.00)		0.10)		0.89)	1.00	0.00)	0.26	
				_									_			
Movement Gro		sults			EB			WB	10		NB		<u> </u>			
Approach Move				L	Т	R	L	Т	R	L	Т	R	<u> </u>	<u> </u>	R	
Assigned Move		· · · ·		5	2	12	1	6	16	3	8	18		-	14	
Adjusted Flow		,		498	471	228	92	1748		142	1091	63		-	219	
-		ow Rate (s), veh/h/l	n	1716	1856	1779	1767	1685	_	1767	1766	1572			1572	
Queue Service		- ,		16.1	10.3	11.1	7.7	48.8	_	11.9	45.8	4.3			18.0	
-		e Time (<i>g c</i>), s		16.1	10.3	11.1	7.7	48.8	_	11.9	45.8	4.3			18.0	
Green Ratio (g	. ,			0.11	0.41	0.41	0.06	0.37		0.09	0.31	0.31			0.26	
Capacity (c), v				368	1533	735	113	1868	_	165	1109	493			409	
Volume-to-Cap		()		1.354	0.307	0.311	0.813	0.93		0.862	0.984	0.128			0.535	
		/In (95 th percentile)		642.6		-	141.7	594.3		238.4	681.1	75.7			291.4	
	. ,	eh/In (95 th percenti		25.1	7.7	8.2	5.5	23.2	_	9.3	26.6	3.0			11.4	
		RQ) (95 th percent	tile)	2.57	0.00	0.00	0.47	0.00	-	0.95	0.00	0.30			0.73	
Uniform Delay				67.0	22.1	23.9	69.3	36.4		67.1	43.2	36.8			47.7	
Incremental De		, ·		176.1	0.5	1.1	5.4	4.6		17.1	18.1	0.1			1.4	
Initial Queue D		•		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0			0.0	
Control Delay (243.1	22.6	25.0	74.7	41.0		84.1	61.4	36.9			49.1 D	
Level of Servic	, ,			F 114.	C	C	E	D	A	F	E	D				
	roach Delay, s/veh / LOS				8	F	26.6		С	62.7		E	11	2	D	
Intersection De	ersection Delay, s/veh / LOS				_	54	4.1				_	_	D	_		
Multimodel D	eulte				ED						ND			CD		
Multimodal Re		/1.08		3.01	EB	С	3.3	WB	С	3.46	NB	С	3.36	SB	С	
											_			_		
Bicycle LOS So	core / LC)S		1.15	>	A	2.11		В	1.56	j	В	1.28	3	A	

Copyright © 2021 University of Florida, All Rights Reserved.

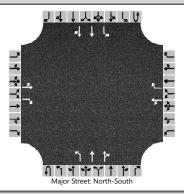

HCS[™] Streets Version 7.9.5

		HCS	7 Sig	nalize	ed Int	tersec	tion F	Resu	lts Su	nmar	y				
General Inform	nation								Intersec	tion Inf	ormatio	n		444	Ju l <u>u</u>
Agency	ation	TTG, Inc.							Duration		0.250			うももでく	. L <u>.</u>
Analyst		QT		Analys	sis Dat	e Nov 4	2019		Area Typ		Other		 ▲		₹_ <u>₹</u>
Jurisdiction		Montgomery, MD		Time F		Total	PM w. vement		PHF		0.95		1 ↓ ↓	W TE	
Urban Street		MD 28		Analys	sis Yea		vement		Analysis	Period	1> 7:0	0			<u> </u>
Intersection		4. MD 28 & MD 119	2	File Na			mp.xus	I	Analysis	T CHOU	1- 1.		- [<u>111</u>	
Project Descrip	tion	PSTA	,		ame		пр.лиз						- "	Ν Ι Ψ [*] Υ	14. L
		1. <u> </u>													
Demand Inform	nation				EB			W	В		NB		Image: set of the set o		
Approach Move				L	Т	R	L	Т		L	Т			R	
Demand (v), v	/eh/h			473	612	52	87	166	61 1057	7 135	1036	60	206	493	208
Signal Informa	ation														
Cycle, s	150.0	Reference Phase	2			Az -	L	Η.	2	21		<u> </u>		5	4
Offset, s	0	Reference Point	End	L		5	<u> </u>				<u> </u>	1	Y 2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Green Yellow	-	8.2 0.0	53.7 4.5	8.8		39.0 5.0)	ж	4	ι	† ,
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.0	0.0	2.0	2.0		2.0		5	6	7	8
			1												
Timer Results				EBI	-	EBT	WB	L	WBT	NBI	-	NBT	SBI		SBT
Assigned Phas	е			5		2	1		6	3		8	7		4
Case Number				2.0		4.0	2.0		3.0	2.0		3.0	2.0		3.0
Phase Duration				23.8	3	68.4	15.6	3	60.2	20.0		51.2	14.8	3	46.0
Change Period		·		0.0		6.5	6.0		6.5	6.0		7.0			7.0
Max Allow Hea		·		4.1		0.0	4.1		0.0	4.0		3.9			3.9
Queue Clearan		1 - 7		23.4			9.7			13.9) .	46.2			20.0
Green Extensio		(ge), s		0.4		0.0	0.1		0.0	0.1		0.0			8.2
Phase Call Pro				1.00			0.98	_		1.00		1.00			1.00
Max Out Proba	DIIILY			1.00	,		0.00	J		0.89		1.00	0.0		0.26
Movement Gro	oup Res	sults			EB	_		WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow	Rate(<i>v</i>), veh/h		498	471	228	92	1748	3 1113	142	1091	63	217	519	219
-		ow Rate (<i>s</i>), veh/h/	In	1716	1856		1767	1685		1767	1766	1572			1572
Queue Service		, ,.		21.4	10.3		7.7	50.3		11.9	44.2	4.4		<u> </u>	18.0
Cycle Queue C		e Time (<i>g c</i>), s		21.4	10.3	_	7.7	50.3	_	11.9	44.2	4.4			18.0
Green Ratio (g	,			0.16	0.41	_	0.06	0.36		0.09	0.29	0.29		L	0.26
Capacity (c), v				545	1532		113	1810		165	1042	464		<u> </u>	409
Volume-to-Cap	-	. ,	\ \	0.914	<u> </u>		0.810	0.96		0.862	1.047				0.535
	(.).	/In (95 th percentile eh/In (95 th percent	,	408.6	197.4 7.7	209 8.2	141.6 5.5	626. 24.5	_	238.4 9.3	763.3 29.8				291.4 11.4
	. ,	RQ) (95 th percent		1.63	0.00		0.47	0.00		9.3 0.95	0.00	0.31			0.73
Uniform Delay		,, ,		62.1	22.1	23.9	69.3	38.3		67.1	45.5	38.9			47.7
Incremental De	, ,			18.7	0.5	1.1	5.2	7.3		17.1	36.0	0.1		<u> </u>	1.4
Initial Queue D		•		0.0	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0			0.0
Control Delay (• •	,		80.8	22.6	_	74.6	45.6	0.0	84.1	81.5	38.9		<u> </u>	49.1
Level of Service	,			F	С	С	E	D	Α	F	F	D	E	D	D
Approach Dela	y, s/veh	/ LOS		47.3	3	D	29.3	3	С	79.7		E	51.1		D
Intersection De	oach Delay, s/veh / LOS ection Delay, s/veh / LOS					4	6.1						D		
														0.7	
Multimodal Re		/1.02		0.01	EB	0	0.01	WB		0.40	NB	0	0.07		
Pedestrian LOS				3.01		C	3.38		C	3.46	_	C			C
Bicycle LOS So	ore / LC	13		1.15)	A	2.11		В	1.56		В	1.28	>	A

Copyright © 2021 University of Florida, All Rights Reserved.

	HCS7 Tw	o-Way Stop-Control Report	
General Information		Site Information	
Analyst	sli	Intersection	5. MD 119 & Blackwell Rd
Agency/Co.	TTG, Inc.	Jurisdiction	Montgomery, MD
Date Performed	11/1/2019	East/West Street	MD 119
Analysis Year	2019	North/South Street	Blackwell Rd / Site Acc
Time Analyzed	Total AM	Peak Hour Factor	0.96
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	PSTA		
Lanos			

Lanes


Vehicle Volumes and Adjustments

venicie volumes and Adj																
Approach		Eastb	ound			West	ound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	1		0	1	1	0	1	2	0	0	1	2	0
Configuration		LT		R		LT		R		L	Т	TR		L	Т	TR
Volume (veh/h)		91	0	39		17	0	42	0	12	477	61	0	267	1053	29
Percent Heavy Vehicles (%)		3	3	3		3	3	3	3	3			3	3		
Proportion Time Blocked																
Percent Grade (%)		(0			()									
Right Turn Channelized		Ν	lo			Ν	о									
Median Type Storage				Undi	vided											
Critical and Follow-up He	eadwa															
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1		
Critical Headway (sec)		7.56	6.56	6.96		7.56	6.56	6.96		4.16				4.16		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.33		2.23				2.23		
Delay, Queue Length, and	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		95		41		18		44		13				278		
Capacity, c (veh/h)		28		467		45		714		610				1000		
v/c Ratio		3.38		0.09		0.40		0.06		0.02				0.28		
95% Queue Length, Q ₉₅ (veh)		11.4		0.3		1.4		0.2		0.1				1.1		
Control Delay (s/veh)		1361.2		13.4		130.5		10.4		11.0				10.0		
Level of Service (LOS)		F		В		F		В		В				А		
Approach Delay (s/veh)		. 95	6.9			45	5.0			0	.2	-		2	.0	
Approach LOS			F				Ξ									

_

HCS7 Two-Way Stop-Control Report									
General Information		Site Information	Site Information						
Analyst	sli	Intersection	5. MD 119 & Blackwell Rd						
Agency/Co.	TTG, Inc.	Jurisdiction	Montgomery, MD						
Date Performed	11/1/2019	East/West Street	MD 119						
Analysis Year	2019	North/South Street	Blackwell Rd						
Time Analyzed	Total PM	Peak Hour Factor	0.95						
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25						
Project Description	PSTA								

Lanes

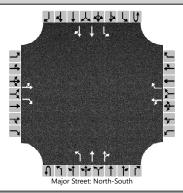
Vehicle Volumes and Adjustments

venicie volumes and Auj																	
Approach		Eastb	ound			Westl	Nestbound			North	bound		Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		0	1	1		0	1	1	0	1	2	0	0	1	2	0	
Configuration		LT		R		LT		R		L	Т	TR		L	Т	TR	
Volume (veh/h)		62	0	30		62	0	221	0	44	999	13	0	36	468	96	
Percent Heavy Vehicles (%)		3	3	3		3	3	3	3	3			3	3			
Proportion Time Blocked																	
Percent Grade (%)		())										
Right Turn Channelized		Ν	lo			Ν	lo										
Median Type Storage		Undivided															
Critical and Follow-up He	eadwa	ys															
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1			
Critical Headway (sec)		7.56	6.56	6.96		7.56	6.56	6.96		4.16				4.16			
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2			
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.33		2.23				2.23			
Delay, Queue Length, and	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)		65		32		65		233		46				38			
Capacity, c (veh/h)		63		696		77		489		972				644			
v/c Ratio		1.03		0.05		0.85		0.48		0.05				0.06			
95% Queue Length, Q ₉₅ (veh)		5.1		0.1		4.3		2.5		0.1				0.2			
Control Delay (s/veh)		232.2		10.4		156.1		18.9		8.9				10.9			
Level of Service (LOS)		F		В		F		С		Α				В			
Approach Delay (s/veh)		. 15	9.8		48.9				0	.4	0.7						
Approach LOS			F				E										

		HCS	/ Sig								,					
														4.4.4.1	1.1	
General Inforn	nation								ntersec		- 6		tria Las			
Agency		TTG, Inc.							Duration		0.250			V V -	۳.	
Analyst		QT		Analysis Date Nov 4, 2019					Area Typ	e	Other	•			≿	
Jurisdiction		Montgomery, MD		Time F			۸M w. In	·	PHF		0.96		*	w∔e	÷	
Urban Street		MD 28		Analys	is Yea	r 2019		/	Analysis	Period	1> 7:0	00	▼ ~		*# /	
Intersection		5. MD 119 & Blackv	vell	File Na	ame	5TA-Ir	np.xus							514		
Project Descrip	tion	PSTA											ľ	414Y	* (*	
								14/5		-						
Demand Inform					EB		<u> </u>	WE	11	<u> </u>	NB		<u> </u>	SB		
Approach Move				L	Т	R	L	Т	R	L	Т	R	L	Т	R	
Demand (v), v		91	0	39	17	0	42	12	477	61	267	1053	29			
Signal Informa	ation					•			1							
Cycle, s	120.0	Poforonao Dhaga	ference Phase 2				1215	- 243					X	5	$\mathbf{\Psi}$	
Offset, s	0	Reference Point	End		F 1	1			12			1	Y 2	3	4	
Uncoordinated				Green		3.4	7.1	34.9		0.0			<u>A</u>		•	
	No	Simult. Gap E/W	On	Yellow	-	4.0	0.0	4.0	0.0	0.0	_	-	¥		· Y	
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.0	1.0	0.0	1.0	0.0	0.0		5	6	7	8	
Timer Results				EBL		EBT	WB		WBT	NBI		NBT	SBL		SBT	
Assigned Phase	<u> </u>					2			6	3	_	8	7	-	4	
Case Number	6					7.0			7.0	1.1		4.0	1.1		4.0	
				<u> </u>		64.6	<u> </u>									
Phase Duration				<u> </u>			<u> </u>		64.6				15.6 0.0		47.0	
Change Period		,				6.0			6.0	5.0	_	5.0	4.0		5.0 3.9	
Max Allow Head						0.0			0.0	4.0		3.9			35.0	
Queue Clearan		, = ,				0.0			0.0	2.6		16.6	14.6			
Green Extensio		(ge), s		<u> </u>		0.0			0.0	0.0		7.3	0.9		7.0	
Phase Call Pro				<u> </u>			<u> </u>	_		0.34		1.00	1.00		1.00	
Max Out Proba	bility									0.00)	0.02	0.00)	0.07	
Movement Gro	oup Res	ults			EB			WB			NB			SB		
Approach Move				L	Т	R	L	Т	R	L	Т	R	L	Т	R	
Assigned Move				5	2	12	1	6	16	3	8	18	7	4	14	
Adjusted Flow I) veh/h				41		18	44	13	285	276	278	566	561	
-	· · ·	ow Rate (<i>s</i>), veh/h/l	n		1406			1406		1767	1856	1782	1767	1856	1838	
Queue Service					3.7	1.6		0.0		0.6	14.2	14.6	12.6	32.9	33.0	
Cycle Queue C					4.4	1.6		0.8		0.6	14.2	14.6	12.6	32.9	33.0	
Green Ratio (g		5 mile (g t), 5			0.49	0.49		0.49		0.32	0.29	0.29	0.44	0.35	0.35	
Capacity (c), v	· ·				746	767		746		139	540	518	431	650	644	
Volume-to-Cap		tio(X)			0.127			0.024		0.090	0.528	0.532	0.645	0.871	0.871	
· · ·		In (95 th percentile)			67.3	27.5		11.9		11.4	241.7	243.6	186.2	412.2	413.3	
		eh/ln (95 th percentie)			2.6	1.1		0.5		0.4	9.4	9.5	7.3	16.1	16.1	
	, ,		,		0.00	0.00		0.00		0.4	0.00	0.00	0.85	0.00	0.00	
-	Queue Storage Ratio (<i>RQ</i>) (95 th percentile)				16.9	16.1		15.9		31.3	30.4	31.6	24.3	29.5	29.9	
-	niform Delay (<i>d</i> 1), s/veh cremental Delay (<i>d</i> 2), s/veh				0.3	0.1		0.1		0.2	0.7	0.8	0.6	29.5	29.9	
						0.1										
Initial Queue Do		•		0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Control Delay (17.2	16.3		16.0	0.0	31.6	31.1	32.4	24.9	31.7	32.1	
Level of Service (LOS)				40.0	В	В	4.0	В	A	C	C	C	C	C	C	
Approach Delay, s/veh / LOS				16.9		B	4.6		A	31.7		С	30.5		С	
	Intersection Delay, s/veh / LOS					29.3							С			
	lay, s/ve															
Intersection De		,			ED						ND			00		
	sults			2.88	EB	С	2.90	WB	С	2.16	NB	B	2.05	SB	В	

Copyright © 2021 University of Florida, All Rights Reserved.

HCS[™] Streets Version 7.9.5

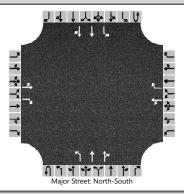

		HCS	7 Sig	nalize	d In	tersec	tion R	lesul	ts Sur	nmar	у				
									-						с. Т.
General Inform	nation								ntersec		- 6		,>4 L <u>a</u>		
Agency		TTG, Inc.							Duration		0.250			V V -	×.
Analyst		QT							Area Typ	e	Other	•			
Jurisdiction		Montgomery, MD		Time F			PM w. Ir	·	PHF		0.95			w∔e	∲ ★
Urban Street		MD 28				ar 2019		/	Analysis	Period	1> 7:(00	7 7		1 1 1
Intersection		5. MD 119 & Blackv	vell	File Na	ame	5TP-Ir	mp.xus							511	
Project Descrip	tion	PSTA											ň	\$ 1 \$P	Pr I
Demand Inform	motion				EB			WE	1		ND		_	<u>e</u> p	
Approach Move				L		R	<u> </u>	T	R	L	NB T	R	L	SB T	R
Demand (v), v				62	0	30	62	0	221	44	999	13	36	468	96
Demand (V), V	/en/n			02	0	30	02	0	221	44	999	13	30	400	90
Signal Informa	ation					L L		24							I
Cycle, s	120.0	Reference Phase	2	1	14 1		54						4	~	Φ
Offset, s	0	Reference Point	End				51	· · · ·				1	2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Green Yellow		7.2	0.7	34.4 4.0	4 0.0 0.0	0.0	_		\rightarrow	U	et a
Force Mode	Fixed	Simult. Gap N/S	On	Red	2.0	0.0	1.0	1.0	0.0	0.0		5	6	7	Y
												·			
Timer Results				EBL	-	EBT	WB	L	WBT	NB	L	NBT	SBI	-	SBT
Assigned Phas	е					2			6	3		8	7		4
Case Number						7.0			7.0	1.1		4.0	1.1		4.0
Phase Duration	1, S					67.8			67.8	12.9)	45.1	7.2		39.4
Change Period	, (Y+R)	c), S				6.0			6.0	5.0		5.0	0.0		5.0
Max Allow Hea	dway (<i>N</i>	<i>MAH</i>), s				0.0			0.0	4.0		3.9		4.0	
Queue Clearan										4.0		33.1	3.7		18.2
Green Extensio	on Time	(ge),s				0.0			0.0	0.1		6.9	0.1		7.1
Phase Call Pro										0.79)	1.00	0.72	2	1.00
Max Out Proba	bility									0.00)	0.05	0.00	0.02	
	_														
Movement Gro		sults		<u> </u>	EB			WB		<u> </u>	NB		<u> </u>	SB	
Approach Move					Т	R	L	Т	R	L	Т	R	L	T	R
Assigned Move				5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow					65	32		65	233	46	534	531	38	305	289
-		w Rate (s), veh/h/l	n		1406			1406		1767	1856	1847	1767	1856	1746
Queue Service					0.0	1.2		0.0		2.0	31.1	31.1	1.7	15.6	16.2
-		e Time (<i>g c</i>), s			2.8	1.2		2.8		2.0	31.1	31.1	1.7	15.6	16.2
Green Ratio (g	· /				0.51			0.51		0.37	0.33	0.33	0.35	0.29	0.29
Capacity (c), v					784	809		784		299	619	616	196	531	500
Volume-to-Cap		· · ·			0.083	_		0.083		0.155	0.862	0.862	0.193	0.573	0.578
		In (95 th percentile)			42.4			42.6		38.4	429.9	430.1	33.1	254.3	256.7
	. ,	eh/In (95 th percenti	,		1.7	0.8		1.7		1.5	16.8	16.8	1.3	9.9	10.0
-		RQ) (95 th percent	tile)		0.00			0.00		0.00	0.00	0.00	0.15	0.00	0.00
Uniform Delay (<i>d</i> 1), s/veh				14.8			14.8		26.0	30.8	31.0	29.6	31.3	33.2	
	emental Delay (<i>d</i> ₂), s/veh				0.2	0.1		0.2		0.2	2.9	2.9	0.4	0.8	0.8
Initial Queue D		,		0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (,			15.0	_		15.0	0.0	26.2	33.7	33.9	30.0	32.1	34.0
Level of Service	· ,				В	В		В	A	C	С	C	C	С	C
Approach Dela				14.8	3	В	3.3		A	33.5	5	С	32.8	3	С
Intersection De	lay, s/ve	eh / LOS				28	3.2						С		
Multime e de LD	ault-													00	
Multimodal Re		/1.02		0.07	EB	C	0.00	WB	0	0.40	NB	D	0.00	SB	P
Pedestrian LOS				2.87	_	C	2.89		C	2.13		B	2.08		B
Bicycle LOS So	core / LC	13		0.65		А	0.98		А	1.40	J	A	1.01		A

Copyright © 2021 University of Florida, All Rights Reserved.

HCS[™] Streets Version 7.9.5

HCS7 Two-Way Stop-Control Report									
General Information		Site Information							
Analyst	QT	Intersection	6. MD 119 & Medical Ctr						
Agency/Co.	TTG, Inc.	Jurisdiction	Montgomery, MD						
Date Performed	11/1/2019	East/West Street	MD 119						
Analysis Year	2019	North/South Street	Medical Center Dr						
Time Analyzed	Total AM	Peak Hour Factor	0.95						
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25						
Project Description	PSTA								
Lamaa									

Lanes



Vehicle Volumes and Adjustments

Venicie Volumes and Auj																	
Approach		Eastb	ound			West	oound			North	bound		Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		0	1	1		0	1	1	0	1	2	0	0	1	2	0	
Configuration		LT		R		LT		R		L	Т	TR		L	Т	TR	
Volume (veh/h)		7	0	41		30	0	62	0	20	489	101	0	317	797	14	
Percent Heavy Vehicles (%)		3	3	3		3	3	3	3	3			3	3			
Proportion Time Blocked																	
Percent Grade (%)		(0				0										
Right Turn Channelized		Ν	lo			Ν	lo										
Median Type Storage		Undivided															
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1			
Critical Headway (sec)		7.56	6.56	6.96		7.56	6.56	6.96		4.16				4.16			
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2			
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.33		2.23				2.23			
Delay, Queue Length, and	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)		7		43		32		65		21				334			
Capacity, c (veh/h)		31		573		39		682		775				949			
v/c Ratio		0.24		0.08		0.81		0.10		0.03				0.35			
95% Queue Length, Q ₉₅ (veh)		0.7		0.2		3.0		0.3		0.1				1.6			
Control Delay (s/veh)		152.8		11.8		241.7		10.8		9.8				10.8			
Level of Service (LOS)		F		В		F		В		Α				В			
Approach Delay (s/veh)		32	2.4			86	5.1			0	.3		3.0				
Approach LOS		[)				F										

HCS7 Two-Way Stop-Control Report									
General Information		Site Information							
Analyst	sli	Intersection	6. MD 119 & Medical Ctr						
Agency/Co.	TTG, Inc.	Jurisdiction	Montgomery, MD						
Date Performed	11/1/2019	East/West Street	MD 119						
Analysis Year	2019	North/South Street	Medical Center Dr						
Time Analyzed	Total PM	Peak Hour Factor	0.96						
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25						
Project Description	PSTA	*	·						

Lanes

Vehicle Volumes and Adjustments

venicie volumes and Auj	ustine	1113																
Approach		Eastb	ound			West	oound			North	bound		Southbound					
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R		
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6		
Number of Lanes		0	1	1		0	1	1	0	1	2	0	0	1	2	0		
Configuration		LT		R		LT		R		L	Т	TR		L	Т	TR		
Volume (veh/h)		10	1	31		94	0	303	0	39	767	36	0	50	515	6		
Percent Heavy Vehicles (%)		3	3	3		3	3	3	3	3			3	3				
Proportion Time Blocked																		
Percent Grade (%)		(0				0											
Right Turn Channelized		Ν	lo			Ν	lo											
Median Type Storage				Undi	vided													
Critical and Follow-up He	eadwa	ys																
Base Critical Headway (sec)		7.5	6.5	6.9		7.5	6.5	6.9		4.1				4.1				
Critical Headway (sec)		7.56	6.56	6.96		7.56	6.56	6.96		4.16				4.16				
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2				
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.33		2.23				2.23				
Delay, Queue Length, and	d Leve	l of Se	ervice															
Flow Rate, v (veh/h)		11		32		98		316		41				52				
Capacity, c (veh/h)		69		723		108		581		1015				787				
v/c Ratio		0.17		0.04		0.91		0.54		0.04				0.07				
95% Queue Length, Q ₉₅ (veh)		0.6		0.1		5.5		3.3		0.1				0.2				
Control Delay (s/veh)		67.6		10.2		136.6		18.3		8.7				9.9				
Level of Service (LOS)		F		В		F		С		A				A				
Approach Delay (s/veh)		25	5.2			- 40	5.3			0	.4		0.9					
Approach LOS		[)				E											

	Concerned and the second se
From:	Sears, Barbara A.
To:	<u>MCP-Chair</u>
Cc:	Sanders, Carrie; Folden, Matthew; Graham, Tamika; Mills, Matthew; David Flanagan; dmflanagan@elmstreetdev.com; iclarke@elmstreetdev.com; Kate Kubit; wguckert@trafficgroup.com; gcook@trafficgroup.com; Gary Unterberg; Randall Rentfro; Sears, Barbara A; Tallerico, Laura M.
Subject:	PSTA Site: Preliminary Plan No. 120200100 – Item 7 on Planning Board Agenda of July 22, 2021 – Letter from Applicant for Inclusion into the Record
Date:	Wednesday, July 21, 2021 1:28:41 PM
Attachments:	image001.png
	image002.png
	image003.png
	image004.png
	image005.png
	Ltr to Plan. Bd. re Medical Center Dr.pdf
	Exhibit A.pdf
	Exhibit B.pdf
	Exhibit C.pdf
	imase005.ong Litto Pila, Reidical Center Dr.pdf Exhibit A.pdf Exhibit A.pdf

[EXTERNAL EMAIL] Exercise caution when opening attachments, clicking links, or responding.

Dear Chairman Anderson and Members of the Planning Board:

On behalf of the Applicant in the above-referenced Preliminary Plan, we wish to submit the attached letter regarding Medical Center Drive for your review and inclusion in the record of the Planning Board hearing. The Preliminary Plan is scheduled for hearing on July 22, 2021 as Item 7.

Thank you for your attention to this matter.

Barbara Sears

Barbara A. Sears

11 N. Washington Street | Suite 700 | Rockville, MD 20850-4229 D: +1 301.517.4812 | O: +1 301.762.1600 | F: +1 301.517.4812

in¥f

Confidentiality Notice: This e-mail, including any attachment(s), is intended for receipt and use by the intended addressee(s), and may contain confidential and privileged information. If you are not an intended recipient of this e-mail, you are hereby notified that any unauthorized use or distribution of this e-mail is strictly prohibited, and requested to delete this communication and its attachment(s) without making any copies thereof and to contact the sender of this e-mail inmediately. Nothing contained in the body and/or header of this e-mail is intended as a signature or intended to bind the addressor or any person represented by the addressor to the terms of any agreement that may be the subject of this e-mail or its attachment(s), except where such intended is expressive indicated.

Any federal tax advice provided in this communication is not intended or written by the author to be used, and cannot be used by the recipient, for the purpose of avoiding penalties which may be imposed on the recipient by the IRS. Please contact the author if you would like to receive written advice in a format which complies with IRS rules and may be relied upon to avoid penalties.

Secure Upload/Download files click here.

July 21, 2021

Barbara A. Sears bsears@milesstockbridge.com (301) 517-4812

Laura M. Tallerico Itallerico@milesstockbridge.com (301) 517-4833

Mr. Casey Anderson, Chair and Members of the Montgomery County Planning Board2425 Reedie Drive, 14th FloorWheaton, MD 20902

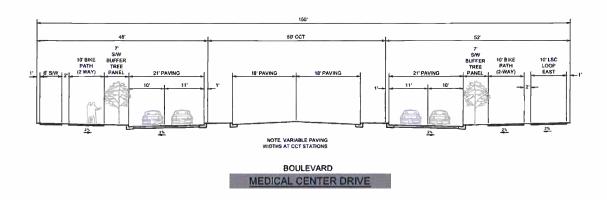
Re: Preliminary Plan No. 120200100 ("Preliminary Plan") – Medical Center Drive

Dear Chair Anderson and Planning Board Commissioners:

On behalf of our client, The Elms at PSTA, LLC, Applicant for approval of the Preliminary Plan ("Applicant"), the purpose of this letter is to request that the Planning Board ("Planning Board") modify staff recommended Conditions 3 and 47(c) with regard to the construction of Medical Center Drive. Applicant requests that the modified cross-section reflect the dedication of a 150-foot right-of-way ("ROW") with the construction of two lanes (in lieu of four) and the pedestrian, bicycle, sidewalk and other streetscape improvements called for by the 2010 approved and adopted Great Seneca Sciences Corridor Master Plan ("GSSC Master Plan"), and 2018 Bicycle Master Plan as shown below. The dedicated ROW and two-lane construction would permit the future construction of two additional travel lanes and the Corridor Cities Transitway ("CCT") by others if needed.

I. Background

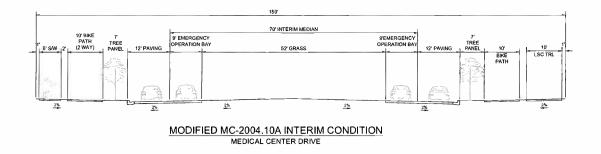
For additional background of the Medical Center Drive ROW issue, please see pages 1–4 of our April 22, 2021 letter to Rebecca Torma of the Montgomery County Department of Transportation ("April Letter"), and the Traffic Analysis attached as an exhibit to the April Letter prepared by The Traffic Group and dated April 20, 2021 ("Traffic Analysis"). The April Letter and Traffic Analysis are attached as <u>Exhibit "A"</u>. In brief, the Preliminary Plan comprises approximately 45 acres of land zoned CR-1.0 C-0.5, R-1.0, H-150 located at 9710 Great Seneca Highway and is known as the former Public Safety Training Academy Site ("Property"). The Applicant proposes to redevelop the Property with a total of 630 units (276 townhouses, 56 2-over-2 condominiums and 298 multi-family, 30% of all units will be Moderately Priced Dwelling Units) and 1,740



square feet of retail using the standard method of development and providing less than 0.5 FAR ("Project"). The GSSC Master Plan anticipated the possibility of redevelopment of the Property at potentially three times the density of 1.5 FAR with 1.0 residential and 0.5 commercial. (GSSC Master Plan, p. 40).

II. Medical Center Drive Cross-Sections

A. Master Plan Cross-Section


The GSSC Master Plan at page 84 designates Medical Center Drive from Key West Avenue to Key West Avenue as an arterial roadway with a 100-150-foot ROW (A-261d). The larger width ROW is applicable to areas where the CCT may be constructed in the future to allow for a 50-foot median. Rodgers Consulting, the Project engineers and land planners, provided the below illustration of the "Master Plan Cross-Section" based on Standard Cross-Section MC 2004.10A for a divided arterial road, the Bicycle Master Plan and the GSSC Master Plan inclusive of the area for the CCT and pedestrian/bicycle features such as the LSC Loop.

B) Proposed Interim Cross-Section

The Applicant proposes to construct a modified interim cross section (the "Interim Condition") as follows:

This Interim Condition includes (i) dedication of 150 feet of ROW to accommodate the future CCT if constructed, (ii) construction of two travel lanes (one lane in each direction), and (iii) all pedestrian, bicycle and streetscape elements called for in the Master Plan Cross-Section. Accordingly, the Interim Condition allows for the construction of the CCT and two additional travel lanes, if needed in the future.

III. The Construction of Four Lanes of Medical Center Drive by the Applicant Lacks an Essential Nexus and Rough Proportionality to the Need Created by the Project

As demonstrated by the Traffic Analysis, the traffic generated by the proposed 630 dwelling units and 1,740 square feet of retail, including background traffic, does not support the construction of Medical Center Drive as a four-lane road. According to the Traffic Analysis, as updated by the attached <u>Exhibit "B"</u> also prepared by The Traffic Group, if Medical Center Drive is constructed as a four-lane road with the Project, only 21% of the four-lane capacity would be utilized by site-generated and background traffic. Further, traffic projected to have access to Medical Center Drive from the Project would utilize approximately 1.8% of the capacity based on average daily traffic, approximately 2.5% of the capacity in the morning peak hour, and approximately 2.4% in the evening peak hour. In sum, the Project does not generate sufficient traffic to justify construction of Medical Center Drive as a four-lane road.

Because the Project will not generate sufficient traffic to require the construction of four travel lanes for Medical Center Drive, requiring the Applicant to not only dedicate 7.3 acres or 16.3% of the total site area for only the Medical Center Drive ROW and construct extensive bicycle, pedestrian, and streetscape improvements, but also construct four lanes, is disproportionate to the burden the Project creates and hence bears no reasonable relationship to the need created by the Project. In support of this point, the

Applicant is only utilizing 2.5% of the four-lane configuration but is being required to pay for 100% of the cost of the road.¹

Based on MCDOT's letter dated July 8, 2021 (pages 3-4) regarding the Preliminary Plan PSTA Site and the Staff Report (pages 38-39), MCDOT and Technical Staff contend that construction of Medical Center Drive as a four-lane road is required pursuant to Section 49-33(f) of the County Code: "The construction of half roads or any road of less than the width provided in this Article is prohibited." MCDOT and Technical Staff further state as justification for their four-lane requirement that Applicant "owns both sides of the Road" and "If the Applicant does not construct both sides of the road, no other property owner will construct the road." These claims are unpersuasive and contrary to applicable law. Initially, it is irrelevant whether the Applicant owns both sides of the road (please note that the Applicant does not own both sides of the entire length of Medical Center Drive) or that the MCDOT and Technical Staff believe no one else will build the additional two lanes. This too is an incorrect assumption because (i) adjacent properties can add lanes when they redevelop; and (ii) since this is a Master Plan Road, these additional two lanes are eligible for funding from impact fees generated by future development projects in the area. Furthermore, Section 49-40(b)(5) allows for waivers of any requirement of Article 3 of the County Code (entitled, "Road Construction and Design Code") which includes Section 49-33(f), to construct "both roadways of a dual road." Moreover, Section 49-33(f) must be read consistent with and cannot defeat applicable constitutional considerations as provided in the Maryland and Federal Constitution and case law interpreting same.

To pass legal scrutiny, an exaction, such as the requirement to construct a public road, must: (1) have an essential nexus with a legitimate public purpose; and (2) be "roughly proportional" to the impact on public services created by a development project. *Koontz v. St. Johns River Water Mgmt. Dist.*, 570 U.S. 595 (2013); *Dolan v. City of Tigard*, 512 U.S. 374, 385, 391 (1994). Even if one accepts the premise that construction of Medical Center Drive as a four-lane road serves a legitimate public purpose, requiring the Applicant to construct the Master Plan Cross-Section which represents 100% of the

¹ Please note that, because the County requires that 30% of all units in the Project must be MPDUs, the Project is exempt from the payment of impact taxes. This exemption is intended to help offset the cost of the large number of MPDUs being constructed. Normally, the construction of a roadway like Medical Center Drive that creates additional capacity for the larger network would be eligible for impact tax credits to offset the cost of the road. This credit allowance demonstrates the legislative acknowledgment the developer should not bear the cost for the creation of a general public benefit and should, therefore, be reimbursed for incurring such a cost. No such reimbursement is available to the Applicant.

total cost of the road but utilizes only 2.5% of the capacity lacks proportionality to the Project's impact on the road.

Specifically, as noted above, courts have held that requirements such as the requirement to construct public road improvements such as Medical Center Drive must have "an essential nexus and rough proportionality to the effects of the proposed new use of the specific property at issue." Koontz, 570 U.S. at 613. The Project, even when including projected future background traffic, does not generate sufficient traffic to require the construction of four travel lanes for Medical Center Drive. In view of these findings, to require the construction of four lanes would fall squarely within the Supreme Court's stated concern in Koontz v. St. Johns River Water Mgmt. Dist. regarding the "... risk that the government may use its substantial power and discretion in land-use permitting to pursue governmental ends that lack an essential nexus and rough proportionality to the effects of the proposed new use of the specific property at issue, thereby diminishing without justification the value of the property". Id. (emphasis added). It is plain from the very limited impact the Project has on Medical Center Drive as a four-lane road and MCDOT's assertions regarding their concern regarding who else the government can get to build the four lanes that the requirement to construct all four lanes is a misuse of the County's "substantial power and discretion in land use permitting to pursue governmental ends which fail the tests of an essential nexus and rough proportionality." Therefore, despite MCDOT's and Technical Staff's assertions regarding Section 49-33(f), the requirement to construct all four lanes may not be lawfully imposed by the Board.

Although the contentions of MCDOT and Technical Staff fail Constitutional scrutiny as discussed above, we note that Medical Center Drive does not constitute a "half road" or a "road of less than the width provided" as contended by MCDOT. The Interim Condition includes two travel lanes (one in each direction), and all pedestrian, bicycle, sidewalk and other streetscape improvements called for by the GSSC Master Plan and Bicycle Master Plan. Furthermore, the Applicant proposes to dedicate the full 150 feet of ROW as recommended for Medical Center Drive in the GSSC Master Plan.

Finally, based on the Traffic Analysis, the need for four lanes on Medical Center Drive will most likely never occur. The density proposed for the Property is significantly less than what is anticipated for the Property in the GSSC Master Plan. The Traffic Group's study indicates that the traffic generated by the Project, as well as all projected background traffic, will not necessitate the construction of Medical Center Drive as a four-lane road. The Traffic Group also confirms that non-site-related traffic will utilize existing more convenient routes along Great Seneca Highway, Key West Avenue, and Darnestown Road (see Exhibit "C" attached). As such, even if the additional two lanes

are not constructed by the County or others, no traffic congestion issue on Medical Center Drive will arise.

IV. Planning Board Authority

The Planning Board need not accept MCDOT's determination that Medical Center Drive must be constructed as a four-lane road. Not only does the constitutional lens through which Section 49-33(f) must be viewed defeat the four-lane requirement, but the Subdivision Regulations (Chapter 50 of the County Code) require the Planning Board make findings regarding the design of roads proposed under a Preliminary Plan. Pursuant to Section 50.4.2.D of the Subdivision Regulations (Chapter 50 of the County Code), the Planning Board must find that "the location and design of roads is appropriate for the subdivision" (Section 50.4.2.D.1) and that "the preliminary plan substantially conforms to the master plan." (Section 50.4.2.D.2) Pursuant to these provisions, with respect to Medical Center Drive, the Planning Board must make an independent determination that: (1) the design of Medical Center Drive is appropriate for the Project; and (2) the design of Medical Center Drive is in substantial conformance with the Master Plan for the Project for the reasons discussed above.

Further, the Planning Board cannot abdicate this authority to MCDOT. Recently the Court of Special Appeals, in an unreported opinion involving a matter before the Board, explained that it is an error for the Planning Board to state that it cannot "second guess" these agencies with respect to findings the Planning Board itself is required to make. *Concerned Citizens of Cloverly v. Montgomery County Planning Board, et. al.*, 2019 WL 1220935. Therefore, although the case is unreported and cannot be used in court as precedent, it provides guidance to the Planning Board regarding the Planning Board's role to determining whether the Applicant's proposal to construct the Interim Condition is appropriate.

V. Conclusion

In conclusion, the Applicant respectfully requests that the Planning Board allow the Applicant to construct the Interim Condition and modify proposed Staff Conditions 3 and 47(c) to reflect this modification. We look forward to discussing our request with the Planning Board at the July 22, 2021 hearing and answering any questions you may have.

Very truly yours,

Barbara A. Sears/Kom

Barbara A. Sears

La M. Talles

Laura M. Tallerico

Enclosures

cc: Carrie Sanders Matt Folden Tamika Graham Matt Mills, Esq. David Flanagan Douglas Flanagan John Clarke Kate Kubit Wes Guckert Glenn Cook Gary Unterberg Randall Rentfro

Barbara A. Sears bsears@milesstockbridge.com 301.517.4815

Laura M. Tallerico Itallerico@milesstockbridge.com 301.517.4833

April 22, 2021

Ms. Rebecca Torma Montgomery County Department of Transportation 101 Monroe Street, 10th Floor Rockville, Maryland 20850

Re: Preliminary Plan No. 120200100 ("Preliminary Plan") – Medical Center Drive – Justification for Construction of Two Travel Lanes as Interim Condition

Dear Ms. Torma:

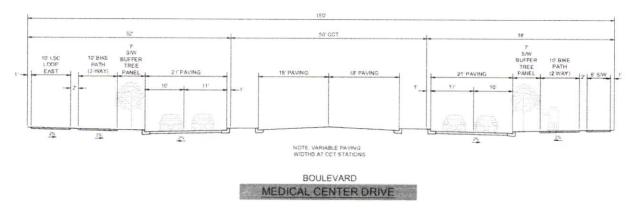
On behalf of our client, The Elms at PSTA, LLC, Applicant for approval of the Preliminary Plan ("Applicant"), the purpose of this letter is to provide justification for the construction by Applicant of Medical Center Drive with two rather than four travel lanes in a dedicated 150-foot right-of-way ("ROW"). Construction would also include related pedestrian, bicycle, sidewalk and other streetscape improvements called for by the *2010 approved and adopted Great Seneca Sciences Corridor Master Plan* ("GSSC Master Plan"). The dedicated ROW would permit future construction of two additional travel lanes and the Corridor Cities Transitway ("CCT") by others.

Property and Project

The property that is the subject of the Preliminary Plan comprises approximately 45 acres located at 9710 Great Seneca Highway and is known as the former Public Safety Training Academy site ("Property"). Montgomery County owns the Property and has entered into a contract of sale with the Applicant ("Contract"). The Property is zoned CR-1.0 C-0.5 R-1.0 H-150. The Preliminary Plan proposes a total of 630 units (276 townhouses, 56 2-over-2 condominiums and 298 multi-family) and 2,607 square feet of retail using the standard method of development and providing less than 0.5 FAR ("Project"). Thirty percent (30%) of the units, or 189 units, will be MPDUs as required by Montgomery County in the Contract. The density proposed by the Project, including the unit number and mix and use of the standard method of development, is acceptable to Montgomery County and complies with the Contract and requirements of the GSSC Master Plan.

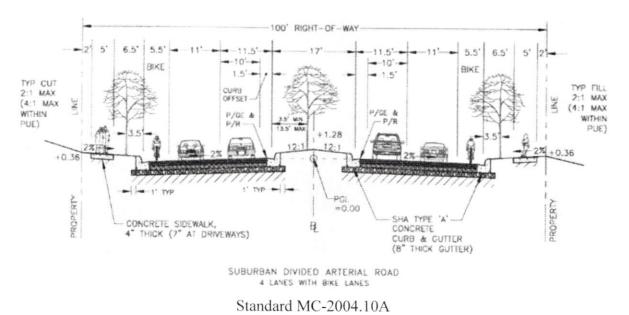
As explained in more detail below, construction of Medical Center Drive with two travel lanes as proposed by Applicant is appropriate because: 1) the Preliminary Plan proposes significantly less density than originally contemplated for the Property by the GSSC Master Plan which was based on the use of the optional method of the CR zone at 1.0 FAR; 2) an analysis of the traffic volumes projected to be generated by the Project and other background development on the projected capacity of Medical Center Drive demonstrates that the Project will have minimal impact and two travel lanes would easily accommodate the projected volumes; and 3) the cost of construction of the full four lanes is disproportionate to the demand created by the Project and constitutes an unreasonable and unlawful exaction.

Proposed Dedication and Construction of Medical Center Drive


The GSSC Master Plan recommends that Medical Center Drive be constructed as a modification to the Montgomery County Standard 2004.10A for a Suburban Divided Arterial with four travel lanes, to include a 50-foot median for the future CCT, and several enhanced pedestrian, bicycle and streetscape improvements within a 150-foot ROW. Although Applicant has proposed to dedicate the full 150-foot ROW to accommodate the ultimate four travel lanes and the CCT, if built, and to construct the enhanced improvements, it has requested a design modification to accommodate the Bicycle Master Plan requirements and CCT right-of-way, as well as to construct two rather than four travel lanes as part of the Preliminary Plan.

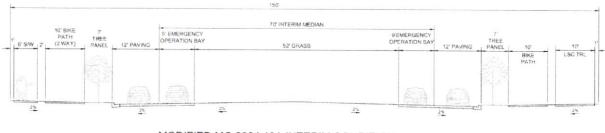
Specifically, the Master Plan Cross-Section includes: two 10-foot inner travel lanes, two 11-foot outer travel lanes, 50-foot median for the CCT, two 10-foot bike lanes, the 10-foot LSC Loop Trail, a 6-foot sidewalk, and two 7-foot tree panels in a 150-foot ROW. (See GSSC Master Plan pp.84–85,¹ 88–90,² 2018 Bicycle Master Plan pp. 302–03) The Master Plan Cross-Section is depicted below:

¹ See A-261d (Medical Center Drive).


² At pages 88–90, the GSSC Master Plan calls for: 1) SP-66, a shared use path along the length of the CCT including along Medical Center Drive; and 2) LB-1, the LSC Loop Trail, "3.5-mile recreational path connecting major destinations in the LSC districts. Portions coterminous with SP-66, the CCT shared use path." The LSC Loop Trail runs along Medical Center Drive coterminous with SP-66.

Master Plan Cross-Section

As noted, the Master Plan Cross-Section is a modification of the Suburban Divided Arterial Road, Four Lanes with Bike Lanes ("Standard 2004.10A") shown below:



Standard 2004.10A requires only 100 feet of ROW, a 17-foot median, and 5-foot and 5.5-foot bike paths. (GSSC Master Plan pp. 84–85.) Additionally, both the GSSC Master Plan and the 2018 Bicycle Master Plan recommend additional improvements within the Medical Center Drive ROW as summarized above which further modify Standard 2004.10A. These modifications result in the Master Plan Cross-Section shown above.

The Applicant, through Rodgers Consulting, has requested a design exception to Standard 2004.10A to accommodate the GSSC Master Plan and 2018 Bicycle Master Plan recommendations

for Medical Center Drive, by letter dated March 23, 2021 to William Whelan ("Modification Letter"). Applicant's requested modification to Standard 2004.10A is illustrated in the following cross-section called "Modified Interim Condition" ("Modification"):

MODIFIED MC-2004.10A INTERIM CONDITION MEDICAL CENTER DRIVE

Applicant proposes to dedicate the full 150 feet of ROW to public use for Medical Center Drive. This dedication consists of approximately 7.3 acres, which represents approximately 17% of the Property, and will accommodate the Master Plan Cross-Section, shown above, including four travel lanes and the CCT. The Applicant proposes to construct the Interim Condition. The Interim Condition, also depicted above, includes construction of all elements called for in the Master Plan Cross-Section with the exception of two of the four travel lanes and the CCT. Specifically, the Interim Condition will include two 12-foot travel lanes (two as 9-foot emergency operation bays), two 10-foot bike lanes, the 10-foot LSC Loop Trail, a 6-foot sidewalk, two 7-foot tree panels, and a 70-foot interim median.

Proposed Density and Impact of Anticipated Traffic Volumes on Medical Center Drive

Circumstances regarding potentially high levels of anticipated density for the PSTA Site under the CR optional method have failed to materialize since the GSSC Master Plan was adopted nearly eleven years ago. The GSSC Master Plan anticipated the demand for a dense commercial/residential development with a potential yield of 2,000 dwelling units and supporting retail and services. (GSSC Master Plan, p. 38). Market factors have never supported the high levels of multifamily residential development reflected in the density assumptions or related levels of retail and service uses on the Property. The Project proposal of 630 dwelling units using the standard method of development with the unit mix proposed and very limited new retail is compliant with GSSC Master Plan zoning and represents the acceptable density feasible for the Property under realistic market circumstances.

This density level does not support the construction of Medical Center Drive with four travel lanes as demonstrated by the attached April 20, 2021, transportation analysis prepared by The Traffic Group regarding the impact of projected traffic volumes from the Project and background approvals on the projected capacity of Medical Center Drive ("Analysis"). A copy of the Analysis is attached as <u>Exhibit "A"</u>. As part of the Analysis, The Traffic Group reviewed existing traffic volumes which would be impacted by the construction of Medical Center Drive in

addition to approved background traffic. As a four-lane divided roadway, Medical Center Drive would be expected to have a capacity of 4,200 vehicles per hour, or 1,050 per lane. Based on background traffic, the projected hourly traffic volume that would be anticipated along Medical Center Drive would be approximately 670 vehicles during the morning peak and 576 during the evening peak. When applicable directional volumes were considered, only 24% of the capacity southbound and 17% northbound would be utilized based on four lanes.

In view of their analysis, The Traffic Group found that:

"... the future anticipated volumes along Medical Center Drive could clearly be accommodated by one thru lane of traffic in each direction operating at a maximum of 48% of capacity in the southbound direction and 34% of capacity in the northbound direction. The addition of the traffic projected to have access to Medical Center Drive from the PSTA Site would utilize 2.5% of the capacity in the morning and approximately 2.4% in the evening." (pp. 1-2)

Thus, considering all projected volumes (background and PSTA), The Traffic Group concluded that "Medical Center Drive would be more than capable of handling the projected volumes which would still only represent a maximum of 48% of the capacity with one lane of traffic along Medical Center Drive in each direction during the highest peak hour." (p. 2)

The Cost of Construction of the Full Four Lanes is Disproportionate to the Demand Created by the Project and Constitutes an Unreasonable and Unlawful Exaction

Given that the Project will not generate sufficient traffic to require the construction of four travel lanes for Medical Center Drive, requiring the Applicant to construct four lanes is disproportionate to the burden the Project creates and hence bears no reasonable relationship to the need created by the Project. Courts have held that requirements such as the requirement to construct public road improvements like Medical Center Drive must have "an essential nexus and rough proportionality to the effects of the proposed new use of the specific property at issue." *Koontz v. St. Johns River Water Mgmt. Dist.*, 570 U.S. 595 (2013). Otherwise stated, to pass legal muster, an exaction must: (1) have an essential nexus with a legitimate public purpose; and (2) be "roughly proportional" to the impact on public services created by a development project. *Dolan v. City of Tigard*, 512 U.S. 374, 385, 391 (1994). Even if one accepts that construction of Medical Center Drive as a four lane road serves a legitimate public purpose, requiring the Applicant to construct the Master Plan Cross-Section at a cost that Applicant's consultants have determined to be in excess of several million dollars, lacks proportionality to the Project's impact on the road.

Such an exaction falls squarely within the Supreme Court's stated concern in *Koontz v. St. Johns River Water Mgmt. Dist.* regarding the "…risk that the government may use its substantial power and discretion in land-use permitting to pursue governmental ends that lack an essential

nexus and rough proportionality to the effects of the proposed new use of the specific property at issue, thereby diminishing without justification the value of the property". Id. at 597. As plain from the very limited impact the Project has on Medical Center Drive as a four-lane divided arterial road, the requirement to construct all four lanes does not bear sufficient proportionality to the demands created by the proposed development. We further note that, because the County requires that 30% of the units must be MPDUs, there is no offset from an impact tax credit for the cost of constructing the road.

As discussed above, Applicant proposes to dedicate over 7.3 acres of the approximately 44-acre Property to public use for Medical Center Drive. This ROW is approximately 50 feet larger in width than a typical divided arterial road with four lanes in order to permit the uncertain future construction of the CCT. The Project does not depend or rely on the CCT for adequacy. Additionally, the CCT is not funded and has no known timeline for funding or construction. It is, therefore, Applicant's position that the dedication of ROW over 100 feet is unreasonable. However, in an effort to resolve the continued objection of MCDOT to reducing the ROW from 150 feet, Applicant has agreed to dedicate the 150 feet requested. To require the construction of four lanes of the road is unacceptable to Applicant for the reasons stated above. Applicant, therefore, requests that the Modification for Medical Center Drive be approved.

Thank you for your time and consideration. Please do not hesitate to contact us should you have any questions of need any further information.

Very truly yours,

Barbara A. Sears / Kom Barbara A. Sears Laura Tallerico / Kom

Laura M. Tallerico

Enclosure

cc: Brenda Pardo Carrie Sanders Tamika Graham John Clarke David Flanagan Doug Flanagan Kate Kubit Wes Guckert Glenn Cook Randall Rentfro Gary Unterberg

CORPORATE OFFICE

Baltimore, MD Suite H 9900 Franklin Square Drive Baltimore, Maryland 21236 410.931.6600 fax: 410.931.6601 1.800.583.8411

DELMARVA OFFICE 443.290.4060

FIELD OFFICE LOCATIONS

Arkansas Florida Georgia Maine Maryland New York North Carolina Ohio South Carolina Texas Utah Virginia West Virginia April 20, 2021

The ELMS at PSTA, LLC c/o Elm Steet Development 1355 Beverly Road, Suite 420 McLean, Virginia 22101

Attn: Kathryn L. Kubit

RE: Medical Center Drive PSTA Site Montgomery County, Maryland Our Job No.: 2019-0201

Dear Ms. Kubit:

As requested, The Traffic Group, Inc. has had an opportunity to review the anticipated capacity for the segment of Medical Center Drive, which is shown on the Master Plan to extend from MD 28 (Key West Avenue) to the north to MD 119 (Great Seneca Highway) to the south. The subject roadway was originally planned to be a four-lane divided arterial roadway with a posted speed limit of 25 MPH. Based on data contained in the Highway Capacity Manual, a four-lane divided roadway with a posted speed limit of 25 MPH would be expected to have a capacity of 1,050 vehicles per hour per lane for a total of 4,200 vehicles for all four lanes per hour.

EXHIBIT A

Although The Traffic Group does not have access to the model originally developed for the design of Medical Center Drive, we have reviewed the existing traffic volumes which would be impacted by the construction of Medical Center Drive in addition to the anticipated development to occur in this area that has been approved but not yet constructed. This traffic is referred to as the background traffic. There is other development in this area that would be anticipated to utilize Medical Center Drive if the property is to be developed in the future.

Medical Center Drive is essentially a parallel roadway for Darnestown Road between MD 128 (Key West Avenue) to the north and MD 119 (Great Seneca Highway) to the south. Based on the background traffic that was utilized in the Traffic Impact Analysis prepared for the PSTA Site, the projected hourly traffic volumes that would be anticipated along Medical Center Drive would be approximately 670 vehicles during the morning peak hour and approximately 576 vehicles during the evening peak hour. Based on the directional volumes, it would be anticipated that the southbound traffic projected along Medical Center Drive would be 24% of the capacity of this roadway if it was constructed as a four-lane divided roadway. The highest northbound volume would represent approximately 17% of the capacity available for a four-lane roadway. Based on this information, it is clear that the future anticipated volumes along Medical Center Drive could clearly be accommodated by one thru lane of traffic in each direction operating at a maximum of 48% of capacity in the southbound direction. The addition of the traffic projected to

have access to Medical Center Drive from the PSTA Site would utilize 2.5% of the capacity in the morning and approximately 2.4% in the evening.

Based on the above calculations, it is clear that with the projected traffic volumes for the background traffic conditions represented in the Traffic Impact Analysis prepared for the PSTA Site as well as the traffic projected to be generated by the PSTA Site, Medical Center Drive would be more than capable of handling the projected volumes which would still only represent a maximum of 48% of the capacity with one lane of traffic along Medical Center Drive in each direction during the highest peak hour.

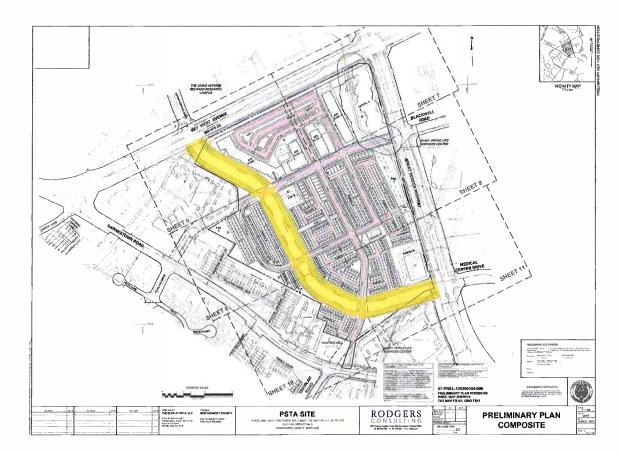
Furthermore, the traffic projected to be generated by the PSTA Site would only utilize a maximum of 2.5% of the available capacity in each direction of a four-lane roadway along Medical Center Drive based on the traffic projections contained in the Revised Traffic Impact Analysis.

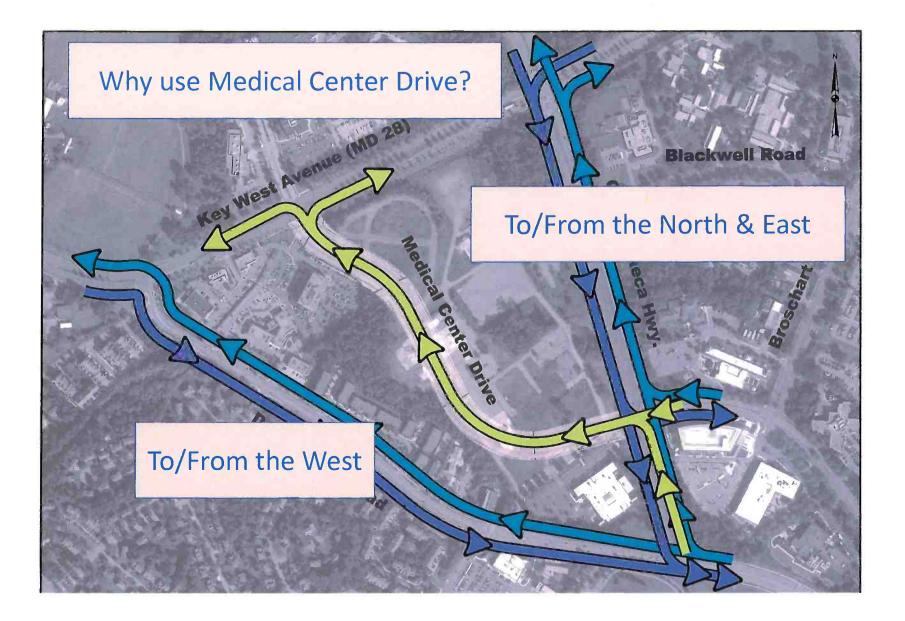
Therefore, it is clear from this analysis, as it relates to the capacity of Medical Center Drive and its ability to accommodate the projected traffic volumes in this area, that Medical Center Drive would be more than adequate to handle the projected demand if constructed as a two-lane roadway versus the four-lane roadway reflected in the Master Plan.

If you have any questions, please do not hesitate to contact me.

Sincerely,

Blen Cook


Glenn E. Cook Senior Vice President


GEC:amr/smb

(F:\2019\2019-0201_PSTA Site LATR\DOCS\CORRESP\ANALYST\April 2021\Ltr_Sears.docx)

Impact of Future Traffic On Medical Center Drive

- Site generated traffic contributes <u>only</u> 2.5% of traffic to Medical Center Drive.
- Total traffic includes projected background and site generated traffic.
- Total traffic will utilize only 21% of four lane capacity.
- Total traffic will utilize only 41% of two-lane capacity.
- Only two lanes are supported by total traffic.

